Return to search

In vivo characterization of RNA cis-regulators in bacteria

Thesis advisor: Michelle M. Meyer / Bacteria commonly utilize cis-acting mRNA structures that bind specific molecules to control gene expression in response to changing cellular conditions. Examples of these ligand-sensing RNA cis-regulators are found throughout the bacterial world and include riboswitches, which interact with small metabolites to modulate the expression of fundamental metabolic genes, and the RNA structures that bind select ribosomal proteins to regulate entire ribosomal protein operons. Despite advances in both non-coding RNA discovery and validation, many predicted regulatory RNA motifs remain uncharacterized and little work has examined how RNA cis-regulators behave within their physiological context in the cell. Furthermore, it is not well understood how structured RNA regulators emerge and are maintained within bacterial genomes. In this thesis, I validate the biological function of a conserved RNA cis-regulator of ribosomal protein synthesis previously discovered by my group using bioinformatic approaches. I then investigate how bacteria respond to the loss of two different cis-regulatory RNA structures. Using Bacillus subtilis as a model organism, I introduce point mutations into the native loci of the ribosomal protein L20-interacting RNA cis-regulator and the tandem glycine riboswitch and assay the strains for fitness defects. I find that disrupting these regulatory RNA structures results in severe mutant phenotypes, especially under harsh conditions such as low temperatures or high glycine concentrations. Together, this body of work highlights the advantages of examining RNA behavior within its biological context and emphasizes the important role RNA cis-regulators play in overall organismal viability. My studies shed light on the selective pressures that impact structured RNA evolution in vivo and reinforce the potential of cis-regulatory RNAs as novel antimicrobial targets. / Thesis (PhD) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_107922
Date January 2017
CreatorsBabina, Arianne M.
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.002 seconds