Return to search

The Gierer-Meinhardt system in various settings.

Tse, Wang Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 75-77). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- On bounded interval with n jumps in inhibitor diffusivity --- p.3 / Chapter 2.1 --- Introduction --- p.3 / Chapter 2.2 --- Preliminaries --- p.5 / Chapter 2.3 --- Review of previous results in the two segment case: interior spike and spike near the jump discontinuity of the diffusion coefficient --- p.7 / Chapter 2.4 --- The construction and analysis of spiky steady-state solutions --- p.9 / Chapter 2.5 --- Stability Analysis --- p.10 / Chapter 2.6 --- Spikes near the jump discontinuity xb of the inhibitor diffusivity --- p.11 / Chapter 2.7 --- Stability Analysis II: Small Eigenvalues of the Spike near the Jump --- p.16 / Chapter 2.8 --- Existence of interior spikes for N segments --- p.20 / Chapter 2.9 --- Existence of a spike near a jump for N segments --- p.24 / Chapter 2.10 --- Appendix: The Green´ةs function for three segments --- p.25 / Chapter 3 --- On a compact Riemann surface without boundary --- p.30 / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Some Preliminaries --- p.35 / Chapter 3.3 --- Existence --- p.43 / Chapter 3.4 --- Refinement of Approximate Solution --- p.50 / Chapter 3.5 --- Stability --- p.52 / Chapter 3.6 --- Appendix I: Expansion of the Laplace-Beltrami Operator --- p.67 / Chapter 3.7 --- Appendix II: Some Technical Calculations --- p.73

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326885
Date January 2009
ContributorsTse, Wang Hung., Chinese University of Hong Kong Graduate School. Division of Mathematics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, v, 77 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.002 seconds