Return to search

Polarizability and Orientation Dynamics of Small Proteins

Proteins often carry an intrinsic electric dipole moment, which can interact with external electric fields and cause protein motion. Previous research has found that the orientation of small proteins in gas phase can be controlled in a static electric field. This effect is hoped to benefit applications such as single-particle imaging, and possibly other techniques involving proteins in electric fields. With the purpose of improving our understanding and modeling of protein orientation, this project investigated the scarcely explored quantum mechanical aspects of the process, namely the polarizability. Ground-state electronic structure simulations of three small model proteins, ubiquitin, Trp-cage and lysozyme, under the influence of electric fields were performed in vacuum. The electric dipole moments of the proteins were extracted from simulations with an applied electric field of strength 1 V/nm for varying angles, with respect to a body fixed reference frame. A Python program was written to analyze and visualize the results. The results point to a connection between the polarizability and the structure of the proteins, as well as size. Next a 3D rigid rotor model was developed using Mathematica in order to study the orientation dynamics classically in a simplified and time efficient way, with the possibility of including the previous quantum results. A comparison between a simulation of ubiquitin with and without polarizability concluded that the polarizability seems to have a damping effect on the orientation dynamics, at least for the initial conditions tested in this study. Further research is necessary to validate the model and perform statistical analysis of many simulations with varying initial conditions. / Proteiner bär ofta på ett inneboende elektriskt dipolmoment, som vid interaktion med externa elektriska fält och orsakar rörelse hos proteinerna. Tidigare studier har funnit att orienteringen av små proteiner i gasfas kan kontrolleras i ett statiskt elektriskt fält. Den effekten kan förhoppningsvis vara en fördel i tillämpningar såsom single-particle imaging, och eventuellt andra tekniker som innefattar proteiner i elektriska fält. I syftet att förbättra vår förståelse och modellering av protein-orientering, har detta projekt undersökt de föga utforskade kvantmekaniska aspekterna av processen, nämligen polariserbarheten. Kvant-baserade simuleringar av grundtillståndet av tre små proteiner, ubiquitin, Trp-cage och lysozym, under påverkan av elektriska fält utfördes i vakuum. Proteinernas elektriska dipolmoment extraherades från simuleringar med ett elektriskt fält med styrkan 1 V/nm för olika vinklar, med avseende på ett kroppsfixerat koordinatsystem. Ett Python-program skrevs för att analysera och visualisera resultaten. Resultaten tyder på att polariserbarheten beror på strukturen och storleken av proteinerna. Därefter utformades en stel-rotor-modell med hjälp av Mathematica för att studera prienteringen klassiskt på ett förenklat och tidseffektivt sätt, med möjligheten att inkludera de tidigare kvantmekaniska resultaten. En jämförelse mellan en simulering av ubiquitin med och utan polariserbarhet konstaterade att polariserbarheten verkar ha en dämpande effekt på orienteringen, åtminstone för begynnelsevillkoren som testades i denna studie. Vidare forskning krävs för att styrka modellen och utföra statistisk analys av många simuleringar med varierande begynnelsevillkor.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-480074
Date January 2022
CreatorsKoerfer, Ebba
PublisherUppsala universitet, Materialteori
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationFYSAST ; FYSMAS1184

Page generated in 0.1116 seconds