Image registration is the process of aligning two images such that their mutual features overlap. This is of great importance in several medical applications. In 2008 a novel method for simultaneous T1, T2 and proton density quantification was suggested. The method is in the field of quantitative Magnetic Resonance Imaging or qMRI. In qMRI parameters are quantified by a pixel-to-pixel fit of the image intensity as a function of different MR scanner settings. The quantification depends on several volumes of different intensities to be aligned. If a patient moves during the data aquisition the datasets will not be aligned and the results are degraded due to this. Since the quantification takes several minutes there is a considerable risk of patient movements. In this master thesis three image registration methods are presented and a comparison in robustness and speed was made. The phase based algorithm was suited for this problem and limited to finding rigid motion. The other two registration algorithms, originating from the Statistical Parametrical Mapping, SPM, package, were used as references. The result shows that the pixel-to-pixel fit is greatly improved in the datasets with found motion. In the comparison between the different methods the phase based algorithm turned out to be both the fastest and the most robust method.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-61331 |
Date | January 2010 |
Creators | Larsson, Jonatan |
Publisher | Linköpings universitet, Medicinsk informatik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds