Return to search

Implementation and evaluation of motion correction for quantitative MRI

Image registration is the process of aligning two images such that their mutual features overlap. This is of great importance in several medical applications. In 2008 a novel method for simultaneous T1, T2 and proton density quantification was suggested. The method is in the field of quantitative Magnetic Resonance Imaging or qMRI. In qMRI parameters are quantified by a pixel-to-pixel fit of the image intensity as a function of different MR scanner settings. The quantification depends on several volumes of different intensities to be aligned. If a patient moves during the data aquisition the datasets will not be aligned and the results are degraded due to this. Since the quantification takes several minutes there is a considerable risk of patient movements. In this master thesis three image registration methods are presented and a comparison in robustness and speed was made. The phase based algorithm was suited for this problem and limited to finding rigid motion. The other two registration algorithms, originating from the Statistical Parametrical Mapping, SPM, package, were used as references. The result shows that the pixel-to-pixel fit is greatly improved in the datasets with found motion. In the comparison between the different methods the phase based algorithm turned out to be both the fastest and the most robust method.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-61331
Date January 2010
CreatorsLarsson, Jonatan
PublisherLinköpings universitet, Medicinsk informatik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds