Dicyclopentadiene (DCPD), a tricyclic olefin, is available from the C5 fraction of petroleum feedstocks. Owing to its high reactivity (due to the presence of a strained alkene), low cost, and lack of other commercial uses, DCPD has been extensively pursued as a monomer for use in ring-opening metathesis polymerization processes. The olefin metathesis reaction, for which Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock received the 2005 Nobel prize, is among the most attractive approaches to polymerize olefins, allowing production of high-molecular weight polymers including linear macromolecules, block copolymers, and crosslinked materials.
Polydicyclopentadiene (PDCPD), which can be produced using a variety of early- and late-transition metal catalysts, is a thermoset polymer with a highly crosslinked structure. PDCPD has excellent impact strength, high storage modulus, good chemical resistance, wide service temperature range, and low density. As a result, it has found broad commercial utility in industrial manufacturing. Additionally, the reaction injecting molding (RIM) process used for DCPD polymerization makes it possible to precisely control the shape and dimensions of PDCPD products.
Owing to its lack of chemical functionality, however, polydicyclopentadiene has many limitations. Previously, our research group developed a modified dicyclopentadiene monomer by adding an electron withdrawing group – a methyl ester functional group – on the pendent cyclopentene ring of the monomer. Polymerization of this functionalized monomer led to a novel thermoset material – methyl ester functionalized polydicyclopentadiene (fPDCPD) – that exhibits tunable surface hydrophobicity.
In experiments described in this dissertation, my collaborators and I confirmed the thermal crosslinking mechanism of fPDCPD using a combination of solution-state and solid-state NMR, FTIR, and Raman spectroscopy. We also explored the surface chemistry of our novel material, by harnessing the embedded functional group in order to exert finer control over hydrophobicity, and to control interactions with biological organisms through the conjugation of biologically relevant functional groups.
To further extend the utility of our functionalized dicyclopentadiene monomer, we synthesized a series of statistical polymers: fPDCPD-stat-PDCPD. Once again, we used a wide range of characterization methods, and showed that we can both tune the surface hydrophobicity of the copolymers and manipulate the mechanical properties by adjusting the molar fractions of functionalized and non-functionalized monomers. Chemical structures of these copolymers were interrogated by NMR, FTIR, and Raman spectroscopy. Frontal ring-opening metathesis polymerization was applied in an effort to study the kinetics of (co)polymerization.
Finally, to lay the groundwork for future fPDCPD manufacturing, we successfully optimized the production of fDCPD monomers to half-kilo scale and fPDCPD polymers at 20-gram scale, while developing a reaction-injection molding process that permitted the production of dimensionally controlled fPDCPD objects. This in turn allowed us to conduct a rigorous assessment of the mechanical properties of our fDCPD through dynamic mechanical analysis (DMA), which established for the first time that our functionalized material has a comparable storage modulus to that of the parent (unmodified) PDCPD.
The development of fPDCPD is approaching a new stage where it is ready to be commercialized and mass produced. We hope that our novel fPDCPD material will soon play a crucial role in replacing traditional metallic components in vehicle design and engineering material manufacturing. / Graduate / 2021-12-14
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/12525 |
Date | 06 January 2021 |
Creators | Li, Tong |
Contributors | Wulff, Jeremy Earle |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | Available to the World Wide Web |
Page generated in 0.0026 seconds