Riparian buffers have been proven to reduce nutrient and sediment transport to streams in agricultural watersheds. Southern Illinois offers a unique opportunity to study functions of riparian buffers in reclaimed mine soils. In Perry County, Illinois three stream segments of Bonnie Creek, Galum Creek and Pipestone Creek were restored to their approximate original position following mining. Between 1980 and 2000, as part of the restoration, vegetative buffers of grasses and trees were planted along the streams to minimize nutrient and sediment inputs from adjacent restored agricultural land. Our research objective was to determine whether riparian soil function was being restored in the vegetated buffers by comparing multiple soil properties to the adjacent reclaimed soils in agricultural production. Four transects were established on each study site through the buffer and agricultural field. Ten one meter plots were evenly spaced along each transect in each of the land uses. In summers 2010 and 2011, water infiltration rates, bulk density, total carbon concentration, total nitrogen concentration, and C:N ratio measurements were made to assess the restoration of soil function. Soil water infiltration was significantly higher and bulk density was significantly lower in the riparian buffers compared to the adjacent agricultural fields. In the riparian buffer, roots likely helped to break up the soil adding pore space, which reduced the bulk density and increased the water infiltration rates. Soil total carbon, total nitrogen, and C:N ratio were significantly higher in the riparian buffers than the agricultural fields. The additional organic matter inputs from the roots of the riparian vegetation along with incorporation of litter from the soil macrofauna likely helped to increase the soil carbon and nitrogen levels compared to the agricultural fields. Even though the soil C:N ratio was significantly higher in the riparian buffers than the agricultural fields, more time is needed to restore the ratio to levels where nitrogen will be immobilized not mineralized in the riparian soils. Soil function in the riparian areas should continue to develop at a faster rate compared to the agricultural fields due to the impact of the perennial vegetation. Restoration of landscapes is not estimated by the return of structure alone, it also includes the re-establishment of function such as soil quality improvement, water quality improvement, and wildlife habitat restoration.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-2160 |
Date | 01 May 2013 |
Creators | Rahe, Nathan |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses |
Page generated in 0.002 seconds