Return to search

Stream temperature dynamics following riparian wildfire : effects of stream-subsurface interactions and standing dead trees

The primary objectives of this study were to address how stream temperature is influenced by (1) spatial variability in energy exchanges, (2) reach-scale stream-subsurface water interactions and (3) the net radiation dynamics associated with standing dead riparian vegetation. Stream temperature, riparian microclimate, and hydrology were characterized for a 1.5 km reach of Fishtrap Creek, located north of Kamloops, British Columbia. Within-reach air temperature and humidity variability was small, while wind speed, net radiation and surface-subsurface interactions exhibited considerable spatially variability. The field data were used to drive a deterministic energy budget model to predict stream temperature. The model was evaluated against measured stream temperature and performed well. The model indicated that the spatially complex hydrology was a significant control on the observed stream temperature patterns. A modelling exercise using three canopy cover scenarios revealed that post-disturbance standing dead trees reduce daytime net radiation reaching the stream surface by one third compared to complete vegetation removal. However, standing dead trees doubled daytime net radiation reaching the stream compared to pre-wildfire conditions. The results of this study have highlighted the need to account for the spatial variability of energy exchange processes, specifically net radiation and surface-subsurface water interactions, when understanding and predicting stream thermal regimes. / Arts, Faculty of / Geography, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/1411
Date11 1900
CreatorsLeach, Jason A.
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
Format9959970 bytes, application/pdf
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0011 seconds