In the northwestern prairies, the cottonwoods Populus deltoides Batr., P. balsamifera L., P. angustifolia James, and inerspecific hybrids, form the foundation of the riparian forest ecosystem. The present project characterized the phenotype and 391henology of each tree in a mature cottonwood grove (N=391) for the purposes of clone-delineation. In order of their utility, tree sex, general leaf-shape, six leaf dimensions, and phenology of flowering, leaf-flushing, senescence,and leaf-abscission were utilized. The population's 391 trunks represented only 115 individuals, 67 of which were clones which ranged from 2 to 58 trunks each. Thus, 88% of all trunks belonged to clones which ranged from 2 to 58 trunks each. Thus, 88% of all trunks belonged to clones, and this high clonal content reflects the senior age of the population. Clone structure explained the population's apparent spatial-clumping, female-skewed sex ratio, differential spatial distributions of the sexes and species, and complexity in trunk-size classes. Trends suggest that P. balsamifera and P. angustifolia are more strongly clonal than P. deltoides, partially explaining their differences in environmental preferences. The observed extent of asexual regeneration has implications for riparian resource management and analyses of cottonwood reproductive ecology. / xv, 201 leaves : ill. ; 28 cm.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:ALU.w.uleth.ca/dspace#10133/44 |
Date | January 1996 |
Creators | Gom, Lori A., University of Lethbridge. Faculty of Arts and Science |
Contributors | Rood, Stewart |
Publisher | Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 1996, Arts and Science, Department of Biological Sciences |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_US |
Detected Language | English |
Type | Thesis |
Relation | Thesis (University of Lethbridge. Faculty of Arts and Science) |
Page generated in 0.0019 seconds