Fluvial systems are dynamic systems in which variables in a catchment and river channel affect the morphology of river reaches. South African rivers are increasingly being exposed to stresses from a combination of factors, one of the most prevalent being the impacts of damming rivers which result in varying downstream sediment fluxes and flow regimes. The sediment load combined with flow characteristics for respective river channels provides the physical habitat for aquatic ecosystems. The damming of the Tsitsa River, through the construction of the Ntabelanga Dam, will change the overall downstream geomorphology. This creates an opportunity for research in the preconstruction window. The current condition of the Tsitsa River was monitored by completing a baseline survey of the channel geomorphology with specific reference to the influence of sediment on river habitats and ecosystem health. Five sites were established in variable reaches of the Tsitsa River, with Site 1 located above the proposed Ntabelanga Dam inundation and Sites 2-5 below the proposed dam wall. Each site included a range of features that can be monitored for their response to the dam. Physical variables, water quality and biota were monitored seasonally to note changes in habitat quality. A baseline survey of the present geomorphology and associated instream habitats of the selected reaches was set up by conducting cross-sectional surveys of channel topography, water slope surveys, discharge measurements and visual and quantitative assessments of substrate. Level loggers were installed at each site to collect continuous data on variations in depth and temperature. Monitoring surveys, in terms of fine sediment accumulation, were conducted to characterise dynamic habitat arrangements and macroinvertebrate community composition. A taxa related physical habitat score for the Tsitsa River was created. The relationship between water quality, physical and ecological characteristics of the Tsitsa River will aid further research in the area as well as create a better understanding of the influence of sediment on river habitats and ecosystem health. Monitoring sites can be used to monitor the impact of catchment-wide rehabilitation on river health prior to the dam being built. After dam construction, the top site above the dam inundation can still be used as a point to monitor the impact of catchment rehabilitation on ecosystem health in terms of fine sediment accumulation.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:27040 |
Date | January 2018 |
Creators | Huchzermeyer, Nicholaus Heinrich |
Publisher | Rhodes University, Faculty of Science, Geography |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | text, Thesis, Masters, MSc |
Format | 201 leaves, pdf |
Rights | Huchzermeyer, Nicholaus Heinrich |
Page generated in 0.0027 seconds