Introduced species can become invasive and cause catastrophic alterations to the system they invade. Both zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena bugensis) have caused significant ecosystem alterations wherever they have invaded. These Dreissena species have caused changes in water quality and biodiversity and have disrupted energy pathways which can have cascading effects on other trophic levels. Recently quagga mussels invaded Lake Powell, a reservoir located in the southwestern USA, creating the possibility of a trophic cascade that could alter energy flow in the reservoir and change the trophic niche structure of the fishes in the lake. However, due to Lake Powell’s large size, dynamic nature, and complex hydrological structure, the effects of quagga mussels on fish species is uncertain. To determine impacts of quagga mussels on Lake Powell fishes, we quantified trophic niches of five species of sport fish over three years (2017-2019) using stable isotopes of nitrogen, δ15N, and carbon, δ13C. We test the following hypothesis: quagga mussels will cause a shift in trophic niche in more pelagic fishes such that pelagic fishes decrease in trophic position and shift toward use of more littoral energy. In addition, we compare the trophic niche of these species with a previous study on the trophic niche of fish in Lake Powell prior to full colonization of the lake by quagga mussels (2014-2015). In general, fish in the southern region of the lake exhibited a trend of decreasing δ15N suggesting decreasing trophic position and an enrichment of δ13C indicating a littoral energy shift in some species. Fish in the northern region of the lake exhibited a slight increase in trophic position and a shift towards pelagic energy across the same time period. These shifts support the hypothesis with pelagic fish experiencing a trophic niche shift, in the direction predicted, but only in the southern region of Lake Powell. Additionally, this shift is not exclusive to pelagic fish, but happened in all five species. Sediment laden input from the Colorado River may offset the impact of quagga mussels in the northern region of the lake resulting in observed regional differences.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-9739 |
Date | 01 December 2020 |
Creators | St Andre, Nathan Richard |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.0019 seconds