Return to search

Life cycle assessment of LED road lighting

It is observed that the power consumption of road lighting is increased with the length of trafficable road in Hong Kong. The energy used in road lighting is increasing, which means that the greenhouse gases (GHGs) emitted from power plant for generating electricity for road lighting is at the same time increasing.

To compare the performance of light emitted diode (LED) road lighting with road lighting of other lamp sources, literature review, life cycle assessment (LCA) and technical assessment are adopted to give an overall comparison. This research focuses more on the environmental impacts of road lighting. LCA is adopted in order to give a comprehensive view on the environmental impact of road lighting. A total of 3 different lamp sources are compared: high pressure sodium (HPS) lamp, induction lamp and light emitted diode (LED) lamp.

From the model result, it is found that due to the low power consumption and long life time, LED and induction lamp road lighting gives generally less environmental impact than HPS road lighting. As induction lamp has a longer life span than LED, the environmental impact of induction lamp road lighting is found slightly less than that of LED road lighting. Taking account the future development in LED technology, leading to longer life time, higher efficacy and lower production cost, LED road lighting is expected to be a replacement for road lighting in Hong Kong for the future. / published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/180086
Date January 2012
CreatorsChan, Ho-kan., 陳可芹.
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
Sourcehttp://hub.hku.hk/bib/B48542611
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.0021 seconds