La robotique a fait progresser les interventions chirurgicales, avec des interventions moins invasives, une manipulation d’instruments plus précise et une meilleure dextérité. Néanmoins, le manque de retour haptique sur les plates-formes chirurgicales existantes aujourd’hui rend délicat l’accomplissement des gestes chirurgicaux et par conséquent augmente le risque de ces procédures. Avec l’introduction d’un retour haptique, les robots chirurgicaux sont conçus avec une approche de télé-opération bilatérale. Le retard, inhérent à cette approche, est crucial car même un petit retard pourrait déstabiliser le système. En pratique, le retard est inévitable, notamment pour les robots miniaturisés avec communication sans fils. Pour résoudre les problèmes liés à l’instabilité induite par le retard et rendre passif le canal de communication, l’approche de wave variable transformation (WVT) a été proposée. Néanmoins, les performances de suivi sont compromises à cause de la conservation de la condition de passivité. Dans cette thèse, une nouvelle approche de compensation basée sur la structure de wave variable, et considérant moins de condition de conservation est proposée afin d’améliorer les performances de suivi en position, en vitesse et en force. Pour garantir la passivité du système global, une approche énergétique (energy reservoir based regulators) est développée pour ajuster les termes de WVT avec une analyse rigoureuse. La méthode proposée permet d’améliorer les performances de suivi avec uniquement un retard de transmission dans un seul sens. Pour faciliter davantage les procédures chirurgicales, notamment les microchirurgies, deux facteurs d’échelle ont été rajoutés à l’approche de compensation. Une analyse de passivité a été par ailleurs menée en considérant la transparence du système. Les performances de suivi peuvent être obtenues si et seulement si les conditions de passivité et de transparence sont satisfaites. Les approches de compensation, avec et sans mise à l’échelle, ont été vérifiées à travers des simulations et des évaluations expérimentales. / Robotic technology has advanced the surgical procedures in terms of reduced trauma, more accurate manipulation and enhanced dexterity. However, the lack of haptic feedback on existing surgical robotic platforms makes it impossible for the surgeon to feel the operative site,and thus increases the risks of surgical procedures. With the introduction of haptic feedback, the surgical robots are design in bilateral teleoperation way. Time delay in bilateral teleoperation is crucial because even small time delay may destabilize the system. In practice, time delay is unavoidable, e.g. wireless communication miniaturized surgical robots, internet based robotic-assisted telesurgery and transmission of big amount of information, etc. In order to solve the instability caused by time delay in bilateral teleoperation, wave variable transformation (WVT) method has been proposed to passivate the delayed communication channel. However, the tracking performances are compromised due to the conservative passivity condition. In this thesis, a new wave variable compensation (WVC) structure with less conservative condition is proposed to enhance the velocity/position and force tracking performances. In order to guarantee the passivity of the whole system, energy reservoir based regulators are designed to adjust the WVC terms in the proposed structure with rigorous analysis. The WVC is able to achieve tracking performance with only single trip time delay. To better facilitate the surgical procedures, e.g. the microsurgeries, a scaled WVC structure is also developed by adding two scaling factors to the WVC structure. Passivity analysis on the scaled WVC is conducted with consideration of system transparency. Scaled tracking performance can be obtained as long as the two obtained passivity and transparency conditions are satisfied. The proposed WVC and scaled WVC have been verified through simulation and experimental studies.
Identifer | oai:union.ndltd.org:theses.fr/2016MONTT332 |
Date | 31 March 2016 |
Creators | Guo, Jing |
Contributors | Montpellier, Poignet, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds