Return to search

Cost- and Performance-Aware Resource Management in Cloud Infrastructures

High availability, cost effectiveness and ease of application deployment have accelerated the adoption rate of cloud computing. This fast proliferation of cloud computing promotes the rapid development of large-scale infrastructures. However, large cloud datacenters (DCs) require infrastructure, design, deployment, scalability and reliability and need better management techniques to achieve sustainable design benefits. Resources inside cloud infrastructures often operate at low utilization, rarely exceeding 20-30%, which increases the operational cost significantly, especially due to energy consumption. To reduce operational cost without affecting quality of service (QoS) requirements, cloud applications should be allocated just enough resources to minimize their completion time or to maximize utilization.  The focus of this thesis is to enable resource-efficient and performance-aware cloud infrastructures by addressing above mentioned cost and performance related challenges. In particular, we propose algorithms, techniques, and deployment strategies for improving the dynamic allocation of virtual machines (VMs) into physical machines (PMs).  For minimizing the operational cost, we mainly focus on optimizing energy consumption of PMs by applying dynamic VM consolidation methods. To make VM consolidation techniques more efficient, we propose to utilize multiple paths to spread traffic and deploy recent queue management schemes which can maximize network resource utilization and reduce both downtime and migration time for live migration techniques. In addition, a dynamic resource allocation scheme is presented to distribute workloads among geographically dispersed DCs considering their location based time varying costs due to e.g. carbon emission or bandwidth provision. For optimizing performance level objectives, we focus on interference among applications contending in shared resources and propose a novel VM consolidation scheme considering sensitivity of the VMs to their demanded resources. Further, to investigate the impact of uncertain parameters on cloud resource allocation and applications’ QoS such as unpredictable variations in demand, we develop an optimization model based on the theory of robust optimization. Furthermore, in order to handle the scalability issues in the context of large scale infrastructures, a robust and fast Tabu Search algorithm is designed and evaluated. / High availability, cost effectiveness and ease of application deployment have accelerated the adoption rate of cloud computing. This fast proliferation of cloud computing promotes the rapid development of large-scale infrastructures. However, large cloud datacenters (DCs) require infrastructure, design, deployment, scalability and reliability and need better management techniques to achieve sustainable design benefits. Resources inside cloud infrastructures often operate at low utilization, rarely exceeding 20-30%, which increases the operational cost significantly, especially due to energy consumption. To reduce operational cost without affecting quality of service (QoS) requirements, cloud applications should be allocated just enough resources to minimize their completion time or to maximize utilization.  The focus of this thesis is to enable resource-efficient and performance-aware cloud infrastructures by addressing above mentioned cost and performance related challenges. In particular, we propose algorithms, techniques, and deployment strategies for improving the dynamic allocation of virtual machines (VMs) into physical machines (PMs).

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-48482
Date January 2017
CreatorsNasim, Robayet
PublisherKarlstads universitet, Institutionen för matematik och datavetenskap, Karlstad
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationKarlstad University Studies, 1403-8099 ; 2017:21

Page generated in 0.0027 seconds