Return to search

HARD ROCKS UNDER HIGH STRAIN-RATE LOADING

Understanding the behavior of geomaterials under explosive loading is essential for several applications in the mining and oil industry. To date, the design of these applications is based almost solely on empirical equations and tabulated data. Optimal designs require accurate and complete knowledge of rock behavior under various loading conditions.
The vast majority of the properties available in the literature have been gathered by deforming the specimen slowly. These properties have been used to establish constitutive models which describe the behavior of rocks under static and quasi-static loading conditions. However, the dynamic properties and material constitutive models describing the behavior of geomaterials under high strain-rate loading conditions are essential for a better understanding and enhanced designs of dynamic applications.
Some attempts have been made to measure dynamic properties of rocks. Also, some trials have been made to devise material models which describe the behavior of rocks and the evolution of damage in the rock under dynamic loading. Published models were successful in predicting tensile damage and spalling in rocks. However, there are no established models capable of predicting compressional damage in rocks due to dynamic loading.
A recently-developed model, the RHT model, was formulated to describe the behavior of concrete over the static and dynamic ranges. The model was also formulated to predict compressional damage based on the strain rate at which the material is subjected to. The RHT model has been used successfully in several applications.
The purpose of this research was to characterize one rock type as an example of a hard brittle rock. The physical properties of the rock as well as the static and dynamic mechanical properties were investigated. These properties were used to calibrate the RHT model and investigate its potentials to predict compressional damage in brittle materials.
The calibrated model showed good precision reproducing the amplitude of the strain signals generated by explosive loading. It was also capable of predicting compressional damage with acceptable accuracy. Unfortunately, due to implementation restrictions, tensile and spall damage could not be captured by the model. The duration and shape of the strain pulse were also poorly modeled. / Thesis (Ph.D, Mining Engineering) -- Queen's University, 2010-12-22 17:54:05.887

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/8474
Date20 November 2013
CreatorsTawadrous, Ayman
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.002 seconds