The purpose with this thesis was to examine the cold rolling mill located at Högskolan Dalarna and to stabilize the rolling process, to achieve steady state. Experiments with cold rolling of an aluminium strip have given results for rolling force, friction, reduction, strip tension and strain hardening. Results show that steady state has been found for the experiments with roll force and strain hardening, and not been found for the experiments with friction and reduction. Results show that increased strip tension gives lower roll forces. The roll force equation of Stone shows comparable results with reality for dry contact with reductions up to 30 %, but starts being incomparable with higher reductions. The roll force equation of Stone shows a bit higher roll forces than reality gave, but was comparable within reductions from 13 to 50 %. Experiments have shown that the aluminium strip has gone through strain hardening. Experiments show how the set roll gap did not yield the desired thickness reduction, there for the elastic spring constant for the rolling mill was examined and determined to be 417 N / mm for the specific alloy band. The influence of tension strip for roll force was examined and Results confirm the theory about how the roll force is decreased by increasing tension strip. The work rolls started to slip against the alumina strip as high tension strip; 70 N/mm2, gave low roll force; < 15kN.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:dalea.du.se:6494 |
Date | January 2011 |
Creators | Waltersson, Erik, Eriksson, Göran |
Publisher | Högskolan Dalarna, Materialvetenskap, Högskolan Dalarna, Materialvetenskap, Borlänge |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds