Approved for public release; distribution is unlimited. / Large-scale circulations in the 15-25 day period over the western North Pacific during northern summer were determined using the leading modes of a Singular Value Decomposition of 850 hPa winds and outgoing longwave radiation. Composites were constructed to define the wave patterns' structural characteristics. Their evolution is characterized by alternating cyclonic and anticyclonic equatorial anomalies that are linked to anomalous convective activity. Mid-latitude perturbations appear to contribute to the growth of new equatorial disturbances. Variability within the cycle is examined relative to variations in the basic state vertical wind shear and zonal wind convergence or divergence in the region equator-10ðN, 140ðE-160ðE. For the 50 cases in a basic state with easterly vertical wind shear and convergence, westward-moving waves propagate farther northwestward, wavelength contraction is greater, their orientation changes from east-west to southwest-northeast, and waves appear to be coupled with a Southern Hemisphere mid-latitude wave train. For the zonal wind divergence set, wave activity occurs farther eastward, circulations maintain a longer wavelength and more zonal orientation, and linkage with the Southern Hemisphere mid-latitudes is minimal. A statistically-significant relationship exists between the 15-25 day wave phase and tropical cyclone activity. Formation frequency and preferred locations are modulated by the 15-25 day wave. / Lieutenant, United States Navy
Identifer | oai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/1168 |
Date | 06 1900 |
Creators | Delk, Tracey Lee |
Contributors | Harr, Patrick, Elsberry, Russell, Naval Postgraduate School (U.S.)., Meteorology |
Publisher | Monterey, California. Naval Postgraduate School |
Source Sets | Naval Postgraduate School |
Detected Language | English |
Type | Thesis |
Format | xvi, 77 p. : ill. (some col.) ;, application/pdf |
Rights | This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States. |
Page generated in 0.0018 seconds