Finite volume method was employed for analyzing the three-dimensional turbulent flow structures, species distributions, and mixing behaviors of combustion flows in a rotary kiln under various operation conditions. The modified £e-£`turbulence model together with wall functions was adopted. Devolatilization of solid wastes were simulated by gaseous methane (CH4) non-uniformly distributed along the kiln bed. Combustion process was considered as a two-step reaction when primary air entered and mixed with methane gas in the first combustion chamber. Mixing-controlled eddy-dissipation model was employed for predicting the reaction rates of CH4, O2, CO2, CO and H2O. Effects of inleakage air, kiln rotation speed and methane distribution along the kiln bed were also examined.
Results show that 128% excess air will get the best combustion efficiency, above which the combustion efficiency will decrease. The temperature and species are not uniformly distributed and are vertically stratified on cross-sectional plane. The combustion efficiency will also be lowered if there is inleakage airflow.
Results also show rotation speed and methane distributions have little effect on combustion efficiency.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0714100-135325 |
Date | 14 July 2000 |
Creators | HSU, WEI-DI |
Contributors | none, none, none |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0714100-135325 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0021 seconds