Return to search

Minimizing Liquid Waste in Peptide Synthesis : A New Application for the Rotating Bed Reactor

Peptide drugs are used to treat a broad spectrum of diseases such as cancer and HIV and have many more promising applications, such as new vaccines against SARS-CoV-2. The most popular manufacturing method for peptides is solid-phase peptide synthesis (SPPS). The main drawback of SPPS is that it is a costly and wasteful process.  SpinChem is a company that provides technology solutions for chemical processes. Recently, SpinChem has started investigating if their Rotating Bed Reactor (RBR) is suitable for peptide synthesis. The goal of this project is to investigate how the RBR can make processes like SPPS more resource-efficient. The idea is that the RBR-system can maximize the solid-phase to liquid ratio (STL). The STL is the ratio of the volume of solid-phase material and the volume of liquid. By maximizing the STL, it is possible to manufacture peptides using less solvents and chemicals. The main quest of the project is formulated into a single question:  How does a high STL affect the efficiency of the RBR-system?  To answer the question, Minitab's statistical software and design of experiments (DOE) will be used to plan and perform experiments in both lab- and industrial scales. DOE factorial experiments are used to gain as much information as possible about the new RBR-system. The results are analyzed and summarized to make a solid foundation for the continued work on the new RBR application.  Peptide synthesis efficiency in the RBR-system is measured using ionic adsorption. The ionic adsorption rate is measured in both lab-scale and industrial-scale experiments. In the lab-scale experiments, the decrease of ions was on average 86,5% after just 15 s with an average STL of 0,936. The industrial-scale experiments showed a similar result where the average decrease in ions was 92,9% after 20 s with an average STL of 0,947. It was concluded that the RBR-system can reduce the consumption of washing-solvent in SPPS by up to 82%.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-184016
Date January 2021
CreatorsNordström, Peter
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds