Return to search

Characterization of Eight Potentially Hazardous Near Earth Asteroids: Rotation Period Analysis and Structure Modeling Via Light Curve Inversion Techniques

The term “homeland security”, seems to have become synonymous with terrorism in the minds of the general public. However, there are other threats to the security of the United States homeland that can be just as, if not more, devastating than terrorism. Included among these other threats is the potential of an asteroid collision with Earth. Historically, asteroid impact events have been responsible for the devastation of our planet and many of the mass extinction events encountered throughout the geologic record. Knowledge of physical parameters such as structure and rotational dynamics of the asteroid are critical parameters in developing interception and deflection techniques, as well as assessing the risk associated with these bodies and mitigation planning in the event of impact. This thesis encompasses the study of eight potentially hazardous asteroids identified in conjunction with NASA’s OSIRIS REX Mission and observed via the Target Asteroid Project, along with observations from the Robotically Controlled Telescope, and the Asteroid Light Curve Database of Photometry. Photometric data was extracted from all observations. Rotation periods of each target were confirmed using Lomb-Scargle time series analysis, with possible secondary periods indicated in the cases of Hathor (2.2169 hours), Bede (161.1501 hours), and Phaethon (4.5563 hours). Shape models for 2002 FG7, 2004 JN13, and Icarus were produced using light curve inversion techniques These are believed to be the first such models for these asteroids.

Identiferoai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-4057
Date01 July 2018
CreatorsHicks, Stacy Jo
PublisherTopSCHOLAR®
Source SetsWestern Kentucky University Theses
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses & Specialist Projects

Page generated in 0.0119 seconds