Return to search

Dynamics of homeomorphisms on surfaces of genus greater than one / Dinâmica de homeomorfismos em superfícies de gênero maior do que um

We consider closed orientable surfaces S of genus greater than one and homeomorphisms f homotopic to the identity. A set of hypotheses is presented, called fully essential system of curves, and it is shown that under these hypotheses, the natural lift of f to the universal cover of S (the Poincaré disk), has complicated and rich dynamics. We also show that the homological rotation set of such a f is a compact convex set with maximal dimension and all points in its interior are realized by compact f-invariant sets, periodic orbits in the rational case. / Consideramos superfícies fechadas orientáveis S de gênero maior do que um e homeomorfismos f homotópicos a identidade. Apresentamos um conjunto de hipóteses, chamado sistema de curvas totalmente essencial, e mostramos que sob essas hipóteses, o levantamento natural de f para o recobrimento universal de S (o disco de Poincaré), tem uma dinâmica rica e complicada. Mostramos também que o conjunto de rotação homológico de f é um subconjunto compacto convexo de dimensão máxima e todos os pontos no seu interior são realizados por conjuntos compactos f-invariantes, órbitas periódicas no caso racional.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17022019-170251
Date03 August 2018
CreatorsJacóia, Bruno de Paula
ContributorsZanata, Salvador Addas
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0019 seconds