Recently, there have been a great interest in the millimeter-wave (mmW) and terahertz (THz) bands due to the unique features they provide for various applications. For example, the mmW is not significantly affected by the atmospheric constraints and it can penetrate through clothing and other dielectric materials. Therefore, it is suitable for a vast range of imaging applications such as vision, safety, health, environmental studies, security and non-destructive testing.
Millimeter-wave imaging systems have been conventionally used for high end applications implementing sophisticated and expensive technologies. Recent advancements in the silicon integrated and low loss material passive technologies have created a great opportunity to study the feasibility of low cost mmW imaging systems. However, there are several challenges to be addressed first. Examples are modeling of active and passive devices and their low performance, highly attenuated channel and poor signal to noise ratio in the mmW.
The main objective of this thesis is to investigate and develop new technologies enabling cost-effective implementation of mmW and sub-mmW imaging systems. To achieve this goal, an integrated active Rotman lens architecture is proposed as an ultimate solution to combine the unique properties of a Rotman lens with the superiority of CMOS technology for fabrication of cost effective integrated mmW systems.
However, due to the limited sensitivity of on-chip detectors in the mmW, a large number of high gain, wide-band and miniaturized mmW Low Noise Amplifiers (LNA) are required to implement the proposed integrated Rotman lens architecture. A unique solution presented in this thesis is the novel Band Pass Distributed Amplifier (BPDA) topology. In this new topology, by short circuiting the line terminations in a Conventional Distributed Amplifier (CDA), standing waves are created in its artificial transmission lines. Conventionally, standing waves are strongly avoided by carefully matching these lines to 50 ?? in order to prevent instability of the amplifier. This causes that a large portion of the signal be absorbed in these resistive terminations. In this thesis, it is shown that due to presence of highly lossy parasitics of CMOS transistor at the mmW the amplifier stability is inherently achieved. Moreover, by eliminating these lossy and noise terminations in the CDA, the amplifier gain is boosted and its noise figure is reduced. In addition, a considerable decrease in the number of elements enables low power realization of many amplifiers in a small chip area.
Using the lumped element model of the transistor, the transfer function of a single stage BPDAs is derived and compared to its conventional counter part. A methodology to design a single stage BPDA to achieve all the design goals is presented. Using the presented design guidelines, amplifiers for different mmW frequencies have been designed, fabricated and tested. Using only 4 transistors, a 60 GHz amplifier is fabricated on a very small chip area of 0.105 mm2 by a low-cost 130 nm CMOS technology. A peak gain of 14.7 dB and a noise figure of 6 dB are measured for this fabricated amplifier.
oreover, it is shown that by further circuit optimization, high gain amplification can be realized at frequencies above the cut-off frequency of the transistor. Simulations show 32 and 28 dB gain can be obtained by implementing only 6 transistors using this CMOS technology at 60 and 77 GHz. A 4-stage 85 GHz amplifier is also designed and fabricated and a measured gain of 10 dB at 82 GHz is achieved with a 3 dB bandwidth of 11 GHz from 80 to 91 GHz. A good agreement between the simulated and measured results verifies the accuracy of the design procedure.
In addition, a multi-stage wide-band BPDA has been designed to show the ability of the proposed topology for design of wide band mmW amplifiers using the CMOS technology. Simulated gain of 20.5 dB with a considerable 3 dB bandwidth of 38 GHz from 30 to 68 GHz is achieved while the noise figure is less than 6 dB in the whole bandwidth. An amplifier figure of merit is defined in terms of gain, noise figure, chip area, band width and power consumption. The results are compared to those of the state of the art to demonstrate the advantages of the proposed circuit topology and presented design techniques.
Finally, a Rotman lens is designed and optimized by choosing a very small Focal Lens Ratio (FL), and a high measured efficiency of greater than 30% is achieved while the lens dimensions are less than 6 mm. The lens is designed and implemented using a low cost Alumina substrate and conventional microstrip lines to ease its integration with the active parts of the system.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/7219 |
Date | 06 November 2014 |
Creators | Fahimnia, Mehrdad |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0019 seconds