In this thesis we modified a sampling-based motion planning algorithm to improve sampling efficiency. First, we modify the RRT* motion planning algorithm with a local motion planner that guarantees collision-free state trajectories without explicitly checking for collision with obstacles. The control trajectories are generated by solving a sequence of quadratic programs with Control Barrier Functions (CBF) constraints. If the control trajectories satisfy the CBF constraints, the state trajectories are guaranteed to stay in the free subset of the state space. Second, we use a stochastic optimization algorithm to adapt the sampling density function of RRT* to increase the probability of sampling in promising regions in the configuration space. In our approach, we use the nonparametric generalized cross-entropy (GCE) method is used for importance sampling, where a subset of the sampled RRT* trajectories is incrementally exploited to adapt the density function.
The modified algorithms, the Adaptive CBF-RRT* and the CBF-RRT*, are demonstrated with numerical examples using the unicycle dynamics. The Adaptive CBF-RRT* has been shown to yield paths with lower cost with fewer tree vertexes than the CBF-RRT*. / 2022-03-27T00:00:00Z
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/43120 |
Date | 27 September 2021 |
Creators | Ahmad, Ahmad Ghandi |
Contributors | Tron, Roberto |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0121 seconds