The capacity of the olfactory neuraxis to undergo neuronal replacement and axon targeting following injury, has led to scrutiny concerning the molecular and physical determinants of this growth capacity. This is because injury to the central nervous system, in contrast, leads to permanent disconnection of neurons with targets. Olfactory ensheathing cells (OECs), a specialized glial cell, may contribute to olfactory repair, and have been used to promote recovery from spinal cord injury. However, there mechanisms underlying OEC-induced regeneration are poorly appreciated.
To understand these mechanisms, OECs from the lamina propria (LP OECs) or olfactory bulb (OB OECs) were transplanted into a lesion of the dorsolateral funiculus. While both cells demonstrated reparative capacities, LP and OB OECs differentially promoted spinal fibre growth; large-diameter neurofilament-positive, CGRP-positive, and serotonergic fibres sprouted in response to both LP and OB OEC transplantation, whereas substance-P and tyrosine hydroxylase-positive neurons grew more extensively following OB or LP OEC transplantation, respectively.
To further understand the growth of spinal cord neurons in response to OECs, a proteomic analysis of OEC secreted factors was performed, identifying secreted protein acidic and rich in cysteines (SPARC) as a mediator of OEC-induced outgrowth in vitro. To test the contributions of SPARC to spinal cord repair after OEC transplantation, cultures of LP OECs from SPARC null and wildtype (WT) mice were transplanted into a crush of the dorsolateral funiculus. Substance P and tyrosine hydroxylase positive axon sprouting was significantly reduced in SPARC null OEC-treated animals, suggesting that individual factors may contribute to OEC-promoted regeneration.
To investigate the effect of OECs on corticospinal (CST) neurons, an in vitro assay was developed using postnatal day 8 CST neurons. Coculture of CST neurons with OB OECs produced extensive axon elongation. Application of OB OEC secreted factors increased CST neurite branching, but did not increase axon elongation. In contrast, plating of CST neurons on OB OEC plasma membrane resulted in extensive axon elongation. Furthermore, the OB OEC plasma membrane could overcome CST neurite outgrowth inhibition induced by an outgrowth inhibitor. Together these findings provide insight into OEC mechanisms of neurite outgrowth and axon regeneration. / Medicine, Faculty of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/963 |
Date | 11 1900 |
Creators | Witheford Richter, Miranda |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Format | 16376969 bytes, application/pdf |
Rights | Attribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Page generated in 0.0024 seconds