Return to search

Dynamics of Cell Packing and Polar Order in Developing Epithelia / Dynamik von Zellpackungen und polarer Ordnung in zweidimensionalen Geweben

During development, organs with different shape and functionality form from a single fertilized egg cell. Mechanisms that control shape, size and morphology of tissues pose challenges for developmental biology. These mechanisms are tightly controlled by an underlying signaling system by which cells communicate to each other. However, these signaling networks can affect tissue size and morphology through limited processes such as cell proliferation, cell death and cell shape changes,which are controlled by cell mechanics and cell adhesion. One example of such a signaling system is the network of interacting proteins that control planar polarization of cells. These proteins distribute asymmetrically within cells and their distribution in each cell determines of the polarity of the neighboring cells. These proteins control the pattern of hairs in the adult Drosophila wing as well as hexagonal repacking of wing cells during development. Planar polarity proteins also control developmental processes such as convergent-extension. We present a theoretical study of cell packing geometry in developing epithelia. We use a vertex model to describe the packing geometry of tissues, for which forces are balanced throughout the tissue. We introduce a cell division algorithm and show that repeated cell division results in the formation of a distinct pattern of cells, which is controlled by cell mechanics and cell-cell interactions. We compare the vertex model with experimental measurements in the wing disc of Drosophila and quantify for the first time cell adhesion and perimeter contractility of cells. We also present a simple model for the dynamics of polarity order in tissues. We identify a basic mechanism by which long-range polarity order throughout the tissue can be established. In particular we study the role of shear deformations on polarity pattern and show that the polarity of the tissue reorients during shear flow. Our simple mechanisms for ordering can account for the processes observed during development of the Drosophila wing.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-ds-1244035271841-50183
Date04 March 2010
CreatorsFarhadifar, Reza
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Frank Jülicher, Prof. Dr. Frank Jülicher, Prof. Dr. Karsten Kruse, Prof. Dr. Jens-Uwe Sommer
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.002 seconds