Das Innenohr des Säugetieres ist ein hochspezialisiertes sensorisches System, das durch ein komplexes mechanisches Verhalten gekennzeichnet ist. Neben der komplizierten Morphometrie und Geometrie kommen auch dem richtungsabhängigen Materialverhalten eine wesentliche Bedeutung zu. Es zeigt sich, daß im Cortischen Organ mit der äußeren Haarsinneszelle ein Zelltyp vorliegt, der durch seine physikalischen Eigenschaften das Gesamtverhalten des Innenohres maßgeblich beeinflußt. Wie jede tierische Zelle weist die äußere Haarsinneszelle als biomechanisches System eine heterogene Mikrostruktur auf. Vom mechanischen Standpunkt aus gesehen, ist neben der mehrschichtigen basolateralen Zellwand jede Einzelzelle durch ein viskoses inneres Fluid (Zellplasma) und einen Zellkern (Nukleus) gekennzeichnet. Die resultierenden mechanischen Eigenschaften des Gesamtsystems ”äußere Haarsinneszelle” können durch Experimente und eine geeignete Modellierung determiniert werden.
In dieser Arbeit wird ein neuer Ansatz zur Bestimmung der viskoelastischen Materialeigenschaften der basolateralen Wand vorgestellt. Durch Anwendung einer effektiven Fluid-Struktur-Interaktion wird das Gesamtsystem geschlossen untersucht und eine umfangreiche Materialparameterstudie durchgeführt. Dabei werden im Rahmen der Kontinuumsmechanik gültige Materialgesetze angewendet. Das durch partielle Differentialgleichungen formulierte mechanische Feldproblem wird im Rahmen der Finiten-Elemente-Methode approximiert, was zu einem linearen Gleichungssystem führt. Auf dieser Grundlage wird ein Finite-Elemente-Modell der äußeren Haarsinneszelle entwickelt. Die zur Beschreibung notwendigen Systemmatrizen – insbesondere die Dämpfungsmatrix – basieren dabei vollständig auf einem viskoelastischen Materialgesetz. Die benutzte Methodik läßt weiterhin eine effiziente Berechnung im Frequenzbereich zu.
Es zeigt sich, daß eine spezielle Dämpfungsformulierung die experimentell bestimmten dynamischen Eigenschaften der Zelle adäquat widerspiegelt. Eine Analyse auf Materialgesetzebene zeigt, daß dafür reine Schubdämpfung und damit eine spezielle Anisotropie im Viskositätstensor verantwortlich ist. Diese Eigenschaft bestimmt das dynamische Verhalten der äußeren Haarsinneszelle bis mindestens 10 kHz und liegt damit im Hörbereich.
Der Modellierung der Zelle geht eine angepaßte Auswertung der experimentell ermittelten Daten voraus. Die mechanisch geeignete Auswertung der zugrundeliegenden Experimente weist dabei auf mögliche Fehlerquellen bei der Analyse der Rohdaten hin. Das hat zur Konsequenz, daß der experimentellen Umgebung die gleiche Aufmerksamkeit geschenkt werden muß wie dem Meßobjekt selbst. Nur so kann eine geeignete Extraktion der für das Meßobjekt spezifischen Eigenschaften erfolgen.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-100717 |
Date | 11 December 2012 |
Creators | Fleischer, Mario |
Contributors | Technische Universität Dresden, Fakultät Maschinenwesen, Prof. (em.) Dr.-Ing. habil. Prof. h.c. Hans-Jürgen Hardtke, Prof. (em.) Dr.-Ing. habil. Prof. h.c. Hans-Jürgen Hardtke, Prof. Dr.-Ing. Anthony W. Gummer |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.002 seconds