Return to search

Reconnaissance automatique des dimensions affectives dans l'interaction orale homme-machine pour des personnes dépendantes

La majorité des systèmes de reconnaissance d'états affectifs est entrainée sur des données artificielles hors contexte applicatif et les évaluations sont effectuées sur des données pré-enregistrées de même qualité. Cette thèse porte sur les différents défis résultant de la confrontation de ces systèmes à des situations et des utilisateurs réels.Pour disposer de données émotionnelles spontanées au plus proche de la réalité, un système de collecte simulant une interaction naturelle et mettant en oeuvre un agent virtuel expressif a été développé. Il a été mis en oeuvre pour recueillir deux corpus émotionnels, avec la participation de près de 80 patients de centres médicaux de la région de Montpellier, dans le cadre du projet ANR ARMEN.Ces données ont été utilisées dans l'exploration d'approches pour la résolution du problème de la généralisation des performances des systèmes de détection des émotions à d'autres données. Dans cette optique, une grande partie des travaux menés a porté sur des stratégies cross-corpus ainsi que la sélection automatique des meilleurs paramètres. Un algorithme hybride combinant des techniques de sélection flottante avec des métriques de similitudes et des heuristiques multi-échelles a été proposé et appliqué notamment dans le cadre d'un challenge (InterSpeech 2012). Les résultats de l'application de cet algorithme offrent des pistes pour différencier des corpus émotionnels à partir des paramètres les plus pertinents pour les représenter.Un prototype du système de dialogue complet, incluant le module de détection des émotions et l'agent virtuel a également été implémenté.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00923201
Date04 October 2013
CreatorsChastagnol, Clément
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds