Return to search

Diagnostic et surveillance des processus complexes par réseaux bayésiens

Cette thèse porte sur la surveillance (détection et diagnostic) des procédés multivariés par réseaux bayésiens. Ceci permet l'unification dans le même outil, un réseau bayésien, de plusieurs méthodes dédiées à la surveillance des procédés, telles que les cartes de contrôles multivariées, l'analyse discriminante ou bien la méthode MYT. Le premier chapitre expose les différents points clés de la surveillance des procédés, en étudiant les diverses approches permettant de réaliser celle-ci. Des méthodes de surveillance supervisées et non-supervisées sont présentées et une étude de différents classifieurs pour la surveillance est effectuée. Le choix d'un classifieur se porte alors sur les réseaux bayésiens. Le second chapitre est l'objet d'une présentation plus approfondie des réseaux bayésiens et des extensions possibles et intéressantes de ce genre d'outil dans le contexte de la surveillance des procédés. Puis, un état de l'art des méthodes de surveillance ou de diagnostic basées sur les réseaux bayésiens est étudié. Le troisième chapitre expose les contributions apportées au domaine de la surveillance des procédés par réseaux bayésiens. Les contributions apportées se répartissent en trois parties : détection, diagnostic supervisé et diagnostic nonsupervisé. En s'appuyant sur ces contributions, la structure complète d'un réseau bayésien dédié à la surveillance des procédés est proposée. Le dernier chapitre présente une application de la méthode proposée sur un exemple classique : le procédé Tennessee Eastman. Les performances du réseau en terme de détection et de diagnostic sont évaluées. Finalement, les conclusions et perspectives de l'approche proposée sont émises.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00346475
Date13 December 2007
CreatorsVerron, Sylvain
PublisherUniversité d'Angers
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds