Der Neutrinofluss der durch die Wechselwirkung hochenergetischer kosmischer Strahlung mit dem kosmischen Mikrowellenhintergrund entsteht, produziert etwa 0.1 Ereignis/km^3 und Jahr. Um in wenigen Jahren eine ausreichende Anzahl an Ereignissen zu selektieren, muss ein Volumen von mindestens 100 km^3 instrumentiert werden. Die groessten aktuell im Bau befindlichen Detektoren, mit einem Volumen bis zu 1 km^3, benutzen optische Sensoren um das Licht zu detektieren, das durch die Neutrinowechselwirkungen produziert wird. Aus Kostengruenden ist es nicht moeglich mit dieser Technologie 100 mal groessere Detektoren zu bauen. Eine Alternative besteht darin, die durch den bei der Neutrinowechselwirkung entstehenden Teilchenschauer hervorgerufenen akustischen Signale und Radiosignale oder deren Kombination nachzuweisen. Eis ist dafuer ein vielversprechenden Medium, weil es die Moeglichkeit bietet alle drei Signal (optisch, akustisch, radio) nachzuweisen. Eine Grundvoraussetzung fuer die Entwicklung eines solchen Detektors ist die Bestimmung der akustischen Eigenschaften des Eises am Suedpol. Das South Pole Acoustic Test Setup (SPATS) wurde mit dem Ziel gebaut, den Rauschuntergrund, die tiefenabhaengige Schallgeschwindigkeit, die Untergrundereignisrate und die Schall-Abklinglaenge zu messen. Der Detektor besteht aus 4 Trossen, bestueckt mit akustischen Sensoren und Transmittern, die in Tiefen zwischen 80 und 500 m im Eis am Suedpol installiert wurden. Zusaetzlich wurde ein Transmitter (Pinger) entwickelt, der in mehreren wassergefuellten Bohrloechern zum Einsatz kam. Nach drei Jahren ist guter Fortschritt bei der Messung aller beschrieben Groessen erzielt worden. Insbesondere haben es der kombinierte Einsatz von SPATS und des Pingers ermoeglicht, die erste in situ Messung der Abklinglaenge zu 312+68-47 m vorzunehmen. In dieser Arbeit werden die Entwicklung der Hardware, die Analyse und die Resultate dieser Messung vorgestellt. / The neutrino flux generated by the interaction of high energy cosmic rays with the cosmic microwave background is predicted to produce about 0.1 event per km^3 per year. The detection of a sufficient number of events in a few years requires to instrument a volume of at least 100 km^3. The biggest detectors nowadays in construction, covering a volume of about 1 km^3, utilize optical sensors to detect the light produced by neutrino interactions; to extend this instrumentation method by the two necessary orders of magnitude is cost-prohibitive. An alternative is to use the radio or the acoustic signal generated by the neutrino-induced particle cascade, or even better, to use both of them in a hybrid detector. Ice is a promising medium since in principle all three signals can be detected simultaneously. The growing optical experiment IceCube, located at the geographic South Pole, could be complemented with radio and acoustic sensors. A pre-requisite to do so is to measure the acoustic properties of South Pole ice. The South Pole Acoustic Test Setup (SPATS) has been designed to measure background noise, sound speed profile, transient events rate and acoustic attenuation length at that location. The system is comprised of four strings of acoustic sensors and transmitters which are installed at depths between 80 and 500 m. In addition, a retrievable transmitter (called pinger) has been developed and used in several water-filled holes. After almost three years of operation, good progress has been achieved for all the goals. In particular, the attenuation length, one of the most important parameters for determining neutrino detection feasibility, and for which only theoretical estimates were available previously, has now been measured in situ with high confidence to be 312+68-47 m. In this work the hardware developed and the analysis performed to achieve this measurement are presented together with the final result.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/16838 |
Date | 01 June 2010 |
Creators | Tosi, Delia |
Contributors | Kolanoski, Hermann, Hallgren, Allan, Price, P. Budford |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0074 seconds