Net photosynthesis (Pn) and photosynthate partitioning were compared between fruiting and deblossomed strawberry plants. Throughout a six-week fruiting cycle, Pn (leaf area basis), specific leaf weight (SLW), and chlorophyll content were determined at 7-day intervals for an early-formed leaf (old leaf) and for the most recently expanded leaf (young leaf) of fruiting and deblossomed day-neutral plants (cv. Tribute). During the fifth week of the fruiting cycle, Pn of the young leaf was higher for fruiting plants than for deblossomed plants. Pn of the old leaf was not different between treatments during any week. During weeks 4 and 5, the young leaf of the deblossomed plants had a higher SLW than that of fruiting plants; SLW of the old leaf was higher for deblossomed plants during weeks 4-6. The young leaf of the deblossomed plants had a higher chlorophyll content than that of fruiting plants during weeks 1 and 4. Chlorophyll content of the old leaf was higher for deblossomed plants during weeks 1, 2, and 4. There were no differences between treatments for stomatal conductance for CO₂ or dark respiration during any week of the fruiting cycle.
In another experiment, deblossoming day-neutral strawberry plants (cv. Tribute) increased the amount of ¹⁴C translocated to the newly-emerging leaves 48 hrs after treatment with ¹⁴CO₂. During weeks 3-6 of the fruiting cycle, leaves of deblossomed plants had a greater total area, dry weight, and total non-structural carbohydrate (TNSC) content than leaves of fruiting plants. Pn on a whole-plant basis was higher for deblossomed plants than fruiting plants. This was largely due to the greater leaf area of the deblossomed plants, since total leaf area was highly correlated with Pn (whole plant basis). Pn (whole plant basis) was highly correlated with total dry weight and TNSC of plants in both treatments. Thus, deblossoming changed Pn and dry matter partitioning of strawberry plants. The additional leaf area and greater Pn rates (whole plant basis) obtained by deblossoming strawberry plants may result in increased yields during subsequent fruiting cycles. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/71255 |
Date | January 1985 |
Creators | Schaffer, Bruce |
Contributors | Horticulture, Barden, John A., Williams, Jerry M., Moore, Laurence D., Orcutt, David M., Wright, Robert |
Publisher | Virginia Polytechnic Institute and State University |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Dissertation, Text |
Format | xii, 72 leaves, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 12407903 |
Page generated in 0.0744 seconds