Made available in DSpace on 2017-07-10T13:59:26Z (GMT). No. of bitstreams: 1
DISSERTACAO AMANDA ALVES MESTRADO EM CIENCIAS FARMACEUTICAS _UNIOESTE 2015.pdf: 10598736 bytes, checksum: 51f0f3eb83858fee62392b7892930766 (MD5)
Previous issue date: 2015-12-07 / SIM(não especificado) / Lignocellulosic biomass are the raw material most abundant and promising as a natural and renewable resource. These plant materials are complex carbohydrate polymer composed mainly of cellulose, hemicellulose and lignin, which are linked by covalent bonds and can be transformed into value-added products, such as biofuels. The degradation of lignocellulosic material is made mainly from enzymes produced by microorganisms such as filamentous fungi, yeast and bacteria. Ethanol production from agricultural residues, based on the enzymatic hydrolysis, it takes basically four stages: production of enzymes, pretreatment, enzymatic hydrolysis and fermentation. Pretreatment is a work that will break the lignin cellulose complex, reducing the degree of crystallinity of the cellulose and increase the porosity of the material, by increasing the surface area of the biomass. However, pre-treatment products can generate inhibitors which include phenolic and other aromatic, aliphatic acids, aldehydes, furans, inorganic ions. The fermentation and simultaneous saccharification is an important approach for producing cellulosic or ethanol of second generation, where the enzymatic hydrolysis of cellulose and fermentation are simultaneously carried out in the same reactor, in order to obtain ethanol at a high rate and decrease formation of inhibitor compounds. Enzymatic hydrolysis requires, first, that the lignocellulosic biomass is pretreated to increase access to enzymatic attack, so that later the cellulose is broken down by cellulase action. Xylanases include the group of enzymes responsible for the hydrolysis of xylan, the major constituent of hemicellulose. The key enzymes involved in this process are β-1,4-endoxylanase and β-D-xylosidase. Endoxylanase cleave glycosidic linkages of the main chain of xylan releasing xylo-oligosaccharides, which are used by β-xylosidase to produce monomers of xylose. The alfaproteobacteria Caulobacter crescentus is non pathogenic, Gram negative, mainly found in aquatic environments and on many types of soils. This bacterium has about seven genes directly associated with xylan degradation and five of them encoding β-xylosidases. To date, there are only three studies on the β-xylosidase II from C. crescentus. The first characterization of this enzyme showed that it is capable of hydrolyzing substrates such as xylobiose, xylotriose and xilopentose whose optimum pH is 6 and optimum temperature is 55°C, although it is stable at 50°C, which shows a thermotolerance, indicating strong enough to be used in different biotechnological applications. The stability and reusability of enzymes are of fundamental importance, since they reflect significantly on the cost of the final product, and one way to achieve this is with the immobilization of enzymes, consisting of confinement thereof in a matrix or support, which can be inert polymers or inorganic materials, so that its catalytic activity is retained and the enzyme can be used repeatedly and continuously. In the present report, it was found that the β-xylosidase II (CcXynB2) of Caulobacter crescentus increased by 62% of its activity in 5 mM KCl probably as a consequence of a positive role of K+ ions.
CCxynB2 was measured against various compounds described as inhibitors of hydrolysis and fermentation of lignocellulosic biomass and showed 61% more tolerant incubation with ethanol (200 mM) at 37 °C for 48 h in the absence of alcohol. The specific activities of CcXynB2 were evaluated in the presence of 10mM phenol or galacturonic acid, 100 mM hydroxymethylfurfural or ferulic acid, 1 mM acetic acid, 200 mM arabinose, glucose or xylose and it was found that were equal (100%) or much higher than the values obtained in the total absence of these compounds after 48 h. When the inhibitors were used in combination, the CcXynB2 retained 67% of its initial activity after testing at 37°C during 48 h. The enzymatic hydrolysis of hemicellulose from corncob was conducted with CcXynB2 alone or in synergism with xylanase and commercial β-glycosidase, which were more efficient in performed the saccharification of hemicellulose from 37-50 °C. The immobilized CcXynB2 in mobile phase resin led to a protective effect of specific activity, which was proportionally parallel to decreased temperatures (60 to -20°C). The data presented here indicate that CcXynB2 is promising and has potential to work in simultaneous saccharification and fermentation processes for cellulosic ethanol production. To our knowledge, is the first time that similar results are reported in the literature to bacterial β-xylosidases. Thus, this work contribute positively by providing essential information to improve the use of β-xylosidase II of Caulobacter crescentus. / Biomassas lignocelulósicas constituem a matéria-prima mais abundante e promissora como recurso natural e renovável. Esses materiais vegetais são polímeros de carboidratos complexos compostos basicamente por celulose, hemicelulose e lignina, que estão unidos entre si por ligações covalentes e podem ser convertidos em produtos de valor agregado, como os biocombustíveis. A degradação dos materiais lignocelulósicos é feita a partir de enzimas produzidas principalmente por micro-organismos como fungos filamentosos, leveduras e bactérias. Para obter etanol a partir de resíduos agroindustriais, baseando-se na hidrólise enzimática, são necessárias, basicamente, quatro etapas: produção de enzimas, pré-tratamento, hidrólise enzimática e fermentação. O pré-tratamento é o processo que irá dissociar o complexo lignina-celulose, reduzir o grau de cristalinidade da celulose e aumentar a porosidade dos materiais, através do aumento da área superficial da biomassa. No entanto, o pré-tratamento pode gerar produtos inibidores, que incluem compostos fenólicos e outros aromáticos, ácidos alifáticos, aldeídos, furanos, íons inorgânicos. A fermentação e sacarificação simultânea é uma estratégia importante para a produção de etanol celulósico ou de segunda geração, onde a hidrólise enzimática da celulose e a fermentação são desenvolvidas simultaneamente no mesmo reator, com o intuito de obter etanol em altas taxas e diminuir a formação de compostos inibidores. A hidrólise enzimática necessita, primeiramente, que a biomassa lignocelulósica seja pré-tratada para aumentar o acesso ao ataque enzimático, para que posteriormente a celulose seja quebrada pela ação de celulases. As xilanases compreendem o grupo de enzimas responsáveis pela hidrólise do xilano, principal constituinte da hemicelulose. As principais enzimas envolvidas nesse processo são β-1,4-endoxilanase e a β-D-xilosidase. Endoxilanases clivam as ligações glicosídicas da cadeia principal do xilano liberando xilo-oligossacarídeos, que são utilizados pelas β-xilosidases para liberar xilose. A alfaproteobactéria Caulobacter crescentus é não patogênica, Gram negativa, encontrada principalmente em ambientes aquáticos e em muitos tipos de solos. Essa bactéria apresenta cerca de sete genes envolvidos diretamente na degradação do xilano, sendo que cinco deles codificam para β-xilosidases. Até o momento, existem apenas três trabalhos sobre a β-xilosidase II de C. crescentus. A primeira caracterização da enzima mostrou que esta é capaz de hidrolisar substratos como xilobiose, xilotriose e xilopentose, cujo pH ótimo é 6 e temperatura ótima é 55ºC, embora seja mais estável em 50ºC, o que demonstra uma modesta termotolerância, indicando ser suficientemente resistente para diferentes aplicações biotecnológicas. A estabilidade e a possibilidade de reutilização de enzimas são de fundamental importância, pois refletem significativamente no custo do produto final, e uma forma de conseguir isso é com a imobilização de enzimas, que consiste no confinamento da mesma em uma matriz ou suporte, que podem ser polímeros inertes ou materiais inorgânicos, de modo que sua atividade catalítica fique retida e a enzima possa ser usada repetidamente e continuamente. No presente trabalho, verificou-se que a β-xilosidase II (CcXynB2) de Caulobacter crescentus aumentou 62% da sua atividade em 5 mM de KCl provavelmente em consequência de um papel positivo dos íons K+. CcXynB2 foi avaliada frente a diferentes compostos descritos como inibidores do processo de hidrólise e fermentação da biomassa lignocelulósica e mostrou-se 61% mais tolerante a incubação com etanol (200 mM) a atividades específicas da CcXynB2 foram avaliadas na presença de 10 mM fenol ou ácido galacturônico, 100 mM de hidroximetilfurfural ou ácido ferúlico, 1 mM de ácido acético, 200 mM de arabinose, glicose ou xilose, e verificou-se que foram iguais (100%) ou muito superiores aos valores obtidos na ausência total destes compostos após 48 h. Quando os inibidores foram usados em associação, a CcXynB2 reteve 67% da sua atividade inicial após 48 h de ensaio a 37ºC. A hidrólise enzimática da hemicelulose de sabugo de milho foi conduzida com CcXynB2 isoladamente ou em sinergismo com xilanase e β-glicosidase comerciais, as quais foram mais eficientes em sacarificar a hemicelulose entre 37-50ºC. A imobilização da CcXynB2 em resina de fase móvel levou a um efeito protetor da atividade específica, que ocorreu de forma paralela à diminuição de temperatura (60 a -20ºC). Os dados apresentados aqui indicam que a CcXynB2 é promissora e possui potencial para atuar em processos de sacarificação e fermentação simultânea para produção de etanol celulósico. Segundo nosso conhecimento, é a primeira vez que resultados similares são relatados na literatura para β-xilosidases bacterianas. Dessa forma, este trabalho pode contribuir positivamente, fornecendo informações fundamentais para aprimorar o uso da β-xilosidase II de Caulobacter crescentus
Identifer | oai:union.ndltd.org:IBICT/oai:tede.unioeste.br:tede/620 |
Date | 07 December 2015 |
Creators | Silva, Amanda Alves |
Contributors | Simão, Rita de Cássia Garcia, Kadowaki, Marina Kimiko, Paulert, Roberta |
Publisher | Universidade Estadual do Oeste do Parana, Programa de Pós-Graduação em Ciências Farmacêuticas Mestrado, UNIOESTE, BR, Ciências Farmacêuticas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE, instname:Universidade Estadual do Oeste do Paraná, instacron:UNIOESTE |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds