In robot navigation, and image content searches reliable salient features are of pivotal importance. Also in biometric human recognition, salient features are increasingly used. Regardless the application, image matching is one of the many problems in computer vision, including object recognition. This report investigates some salient features to match sub-images of different images. An underlying assumption is that sub-images, also called image objects, or objects, are possible to recognize by the salient features that can be recognized independently. Since image objects are images of 3D objects, the salient features in 2D images must be invariant to reasonably large viewing direction and distance (scale) changes. These changes are typically due to 3D rotations and translations of the 3D object with respect to the camera. Other changes that influence the matching of two 2D image objects is illumination changes, and image acquisition noise. This thesis will discuss how to find the salient features and will compare them with respect to their matching performance. Also it will explore how these features are invariant to rotation and scaling.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-1145 |
Date | January 2008 |
Creators | Farzaneh, Sara |
Publisher | Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Högskolan i Halmstad/Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds