Return to search

Novel Image Analysis Methods for Quantification of DNA Microballs from Fluorescence Microscopy / Nya bildanalysmetoder för kvantifiering av DNA-mikrobollar från fluorescensmikroskopi

Gene editing techniques have been emerging rapidly through the years, and with this trend comes the great responsibility of making sure the edits are correct. One way to safeguard against mistakes in the edits is to measure gene editing efficiency. Countagen’s GeneAbacus does just that, it calculates the gene editing efficiency of CRISPR edits. A key aspect of the GeneAbacus workflow involves quantifying DNA microballs captured in fluorescence microscopy images. This thesis delves into novel image analysis pipelines aimed at optimizing this task. Six image processing techniques (Maximum Intensity Projection (MIP), white top hat transform, Contrast Limited Adaptive Histogram Equalisation (CLAHE), edge enhancement filter, Gaussian Blur, and unsharp masking) along with two object segmentation models (Segment Anything (SAM) and SAM for Microscopy (MicroSAM)) were implemented. They underwent evaluation in two stages: first, through an ablation study of the preprocessing techniques, and then by computing R2 values and log-log plot slopes on different datasets. The evaluation resulted in the selection of MicroSAM with white top hat transform, Gaussian blur and unsharp masking, yielding an average slope value of 0.698 and an average R2 value of 0.8724. / Genredigeringstekniker har vuxit fram snabbt genom åren, och med denna trend följer det stora ansvaret att se till att redigeringarna är korrekta. Ett sätt att skydda sig mot misstag i redigeringarna är att mäta effektiviteten i genredigering. Countagens GeneAbacus gör just det, den beräknar genredigeringseffektiviteten för CRISPR-redigeringar. En nyckelaspekt av GeneAbacus arbetsflöde involverar kvantifiering av DNA-mikrobollar som fångats i fluorescensmikroskopibilder. Detta examensarbete fördjupar sig i nya bildanalyspipelines som syftar till att optimera denna uppgift. Sex bildbehandlingstekniker (Maximum Intensity Projection (MIP), white top hat transform, CLAHE, edge enhancement filter, Gaussian Blur och osharp maskning) tillsammans med två objektsegmenteringsmodeller (Segment Anything (SAM) och SAM for Microscopy (MicroSAM)) implementerades. De genomgick utvärdering i två steg: först genom en ablationsstudie av förbehandlingsteknikerna och sedan genom att beräkna R2 värden och log-log-plottlutningar på olika datamängder. Utvärderingen resulterade i valet av MicroSAM med en white top hat transform, Gaussian Blur och osharp maskning, vilket gav ett genomsnittligt lutningvärde på 0,698 och ett genomsnittligt värde på R2 på 0,8724.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-347729
Date January 2024
CreatorsJithendra, Shreya
PublisherKTH, Medicinteknik och hälsosystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2024:095

Page generated in 0.0017 seconds