Return to search

Sandbox modelling of forekink and wedge development in a fold and thrust belt / Sandbox-modellering av veck och kilutveckling i en bergskedja

In nature, rock masses are not static, but constantly changing with erosion, metamorphosis, tectonics and more. Rocks that bend and buckle can be seen almost as nature's origami, being folded into new shapes and structures. During shortening of a sequence of sedimentary layers, they fold and/or thrust to accommodate the convergence. Folds initiate as kinks which may evolve into thrusts. These folds and thrusts form a wedge which grows in height and length with continued convergence. This study examines the sequence of formation of kinking in fold and thrust belts, specifically the development of forekinks from thrusting and the evolution of the wedge. This was done through geometric analysis of images taken of an analogue sandbox model, run in 2011, which consisted of horizontal layers shortened from one end to 25% bulk convergence above a rigid basement. In nature, such wedges are found as accretionary prisms in convergence zones and as fold and thrust belts on either side of an orogen. By simulating the creation of these wedges and kinks with controlled parameters, it is possible to gain an understanding of the mechanical processes involved in their creation, which allows for a better understanding of these processes in nature. This study is mainly based on measurements of separation created by kinking, dip of the kinks at different levels, and the dimensions of the wedge, in addition to other geometric features. The results showed clear trends for the evolution of these geometric features with progressive model shortening. Results show that, forekinks become inactive when a new kink develops in its foreland. The amount of separation within a kink is dependent on how soon a new kink is developed in front of it and the throw (vertical component) is generally larger than the heave (horizontal component). Dip of a forekink steepens as the forekink cumulatively rotates backwards by the creation of new forekinks in front of it. Evolution of the forekinks has a direct impact on wedge development. Wedge length is larger than height and as the shortened layers are compacted, the dimensions of the wedge increase at different rates. Generally the results of this study are in agreement with previous research conducted within the subject. If rock folding is nature’s origami, then the study of these processes can allow us to understand how fold and thrust belts develop, just as studying how a piece of paper folds, can show us how a napkin can transform into a swan. / I naturen är bergmassor inte statiska utan förändras ständigt av erosion, metamorfos, tektonik med mera. Berg som böjs och bänds kan nästan ses som naturens origami; veckandes till nya former och strukturer. Under förkortning av en sekvens sedimentära lager viker de sig och/eller förkastas för att tillgodose konvergensen. Ett veck i ett lager kan så småningom utvecklas till en förkastning. Dessa veck och förkastningar bildar en kil som växer både på höjden och längden med fortsatt konvergens. Denna studie undersöker veckbildning i bergskedjor, specifikt utvecklingen av framåtvända veck och kilens utveckling. Detta gjordes genom geometrisk analys av bilder tagna av ett försök utfört i en analog Sandbox-modell (gjort 2011) som bestod av horisontella lager förkortade från ena änden till 25% bulk-förkortning ovanför en fast bas. Kilar såsom de som ses i modellen hittas i naturen som accretionära prismor i konvergenszoner och på vardera sida om bergskedjor. Genom att simulera skapandet av dessa kilar och veck i en kontrollerad miljö är det möjligt att skapa sig en förståelse för de mekaniska processer som är involverade i dess skapande, vilket möjliggör en bättre förståelse av dessa processer i naturen. Denna studie är huvudsakligen baserad på mätning av separation skapad av veckning, veckens stupning vid olika djup och kilens dimensioner, tillsammans med andra geometriska egenskaper. Resultaten visade tydliga trender för utvecklingen av dessa geometriska egenskaper i samband med att modellen förkortades. Resultaten visar att framåtvända veck blir inaktiva när ett nytt veck utvecklas framför den. Mängden separation inom ett veck beror på hur snart det nya vecket utvecklas framför den och kast (vertikal komponent) är i allmänhet större än hiv (horisontell komponent). Stupning av ett veck blir brantare när vecket kumulativt roterar bakåt genom att det skapas nya veck framför den. Utvecklingen av vecken har en direkt inverkan på kilens utveckling. Kilen är längre än den är hög och då de förkortade lagren komprimeras växer kilens dimensioner i olika takt. Överlag överensstämmer resultaten av denna studie med tidigare forskning inom ämnet. Om veckandet av bergmassor är naturens origami, kan studerandet av dessa processer möjliggöra för oss att förstå hur bergskedjor utvecklas, precis som att studerandet av hur ett papper viker sig, kan visa oss hur en servett kan förvandlas till en svan.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-530822
Date January 2024
CreatorsDougherty, Eira Kaya
PublisherUppsala universitet, Institutionen för geovetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0032 seconds