Return to search

Abelian Sandpile Model on Symmetric Graphs

The abelian sandpile model, or chip firing game, is a cellular automaton on finite directed graphs often used to describe the phenomenon of self organized criticality. Here we present a thorough introduction to the theory of sandpiles. Additionally, we define a symmetric sandpile configuration, and show that such configurations form a subgroup of the sandpile group. Given a graph, we explore the existence of a quotient graph whose sandpile group is isomorphic to the symmetric subgroup of the original graph. These explorations are motivated by possible applications to counting the domino tilings of a 2n × 2n grid.

Identiferoai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1220
Date01 May 2009
CreatorsDurgin, Natalie
PublisherScholarship @ Claremont
Source SetsClaremont Colleges
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHMC Senior Theses

Page generated in 0.0017 seconds