Return to search

Advanced thermal management of diesel aftertreatment systems

State-of-the-art diesel exhaust gas aftertreatment systems have proved to substantially decrease vehicles’ emissions. However, their effectiveness depends on the temperature of the exhaust gas and catalysts to activate the emissions’ conversion reactions. In this research study, different strategies for thermal management of diesel aftertreatment systems were investigated to reduce vehicles’ emissions. A thermal energy storage (TES) system was developed and implemented for a light-duty diesel aftertreatment system. In this approach, the extra thermal energy of the exhaust gas during engine’s high-load conditions can be stored and reused when required, in order to maintain the emissions’ conversion reactions during a driving cycle. The results indicated that by increasing the thermal conductivity of the thermal energy storage medium and the catalyst’s substrate, the TES system can reduce the vehicle’s cumulative CO and THC emissions by 91.7% and 41.2% respectively. Active heating of the aftertreatment system was studied to provide the catalysts with the required thermal energy, in order to shorten the catalyst’s light-off period and also prevent the catalyst from light-out during a driving cycle. A pulsating electrical catalyst heating strategy and a combined electrical heating and fuel post-injection approach were developed to increase the heating efficiency while minimizing the vehicle’s emissions.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:699122
Date January 2016
CreatorsHamedi, Mohammadreza
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/7059/

Page generated in 0.0015 seconds