Return to search

Biology of heartwood formation in Sitka spruce and Scots pine

Heartwood is the dead, inner layers of wood in the tree which no longer transport water. It is usually dark in colour and has increased decay-resistance compared to the sapwood. Heartwood forms in the transition zone when the ray cells die and deposit chemical extractives in the surrounding xylem. These chemicals convey natural durability which is of value to the forest and timber industry. Despite its value the formation of heartwood is poorly understood. The objective of this PhD is to improve our understanding of heartwood formation in Sitka spruce and Scots pine, the most widely planted species in Britain. Separating heartwood and sapwood at the sawmill can increase timber value due to differences in wood properties. The amount of heartwood varies both with height within, and between trees. Empirical models were developed to describe heartwood and sapwood distribution by diameter, area and ring number 1) within any wood disc 2) with height in the standing tree using taper functions, and 3) its variation between trees. Models will be incorporated into wood quality models to optimise heartwood utilisation. According to pipe theory a certain area of sapwood sustains a volume of canopy, with redundant sapwood converted to heartwood. Sap flux was examined across the sapwood and transition zone in Sitka spruce to understand water transport in relation to heartwood formation and identify seasonal change in transport in the transition zone. Results suggest that the transition zone ceases water transport around dormancy and the amount of heartwood formed may be driven by new wood formation, maintaining sapwood depth. Heartwood formation is a seasonal process, however this has not been confirmed in Sitka spruce or Scots pine, or under UK climatic conditions. Seasonal variation in carbon dioxide and ethylene production by the transition zone were measured to identify the time of heartwood formation, which was late summer through dormancy, consistent with published literature. The role of ethylene in heartwood formation is confirmed. Heartwood formation is an active developmental process, a form of programmed cell death, and as such must be carefully regulated temporally and spatially. Regulation by phytohormones has been proposed but not confirmed. Screening for a broad range of phytohormones during the proposed season of heartwood formation identified an increase in abscisic acid and a decrease in auxin concentration in the transition zone. Abscisic acid, auxin and ethylene also regulate xylogenesis, therefore the same signals that initiate cambial dormancy may also provide the temporal regulation of heartwood formation. The results of this PhD will optimise the use of heartwood in Sitka spruce and Scots pine in the UK and contribute towards selective tree breeding for increased heartwood volume worldwide.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:563639
Date January 2011
CreatorsBeauchamp, Kate
ContributorsMencuccini, Maurizio. : Gardiner, Barry. : Perks, Mike
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/5788

Page generated in 0.0018 seconds