Yes / Fabrication of extracellular matrix (ECM)-like scaffolds (in terms of structural-functional) is the main challenge in skin tissue engineering. Herein, inspired by macromolecular components of ECM, a novel hybrid scaffold suggested which includes silk/hyaluronan (SF/HA) bio-complex modified by PCP: [polyethylene glycol/chitosan/poly(ɛ-caprolactone)] copolymer containing collagen to differentiate human-adipose-derived stem cells into keratinocytes. In followed by, different weight ratios (wt%) of SF/HA (S1:100/0, S2:80/20, S3:50/50) were applied to study the role of SF/HA in the improvement of physicochemical and biological functions of scaffolds. Notably, the combination of electrospinning-like and freeze-drying methods was also utilized as a new method to create a coherent 3D-network. The results indicated this novel technique was led to ~8% improvement of the scaffold's ductility and ~17% decrease in mean pore diameter, compared to the freeze-drying method. Moreover, the increase of HA (>20wt%) increased porosity to 99%, however, higher tensile strength, modulus, and water absorption% were related to S2 (38.1, 0.32 MPa, 75.3%). More expression of keratinocytes along with growth pattern similar to skin was also observed on S2. This study showed control of HA content creates a microporous-environment with proper modulus and swelling%, although, the role of collagen/PCP as base biocomposite and fabrication technique was undeniable on the inductive signaling of cells. Such a scaffold can mimic skin properties and act as the growth factor through inducing keratinocytes differentiation.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/18370 |
Date | 21 February 2021 |
Creators | Aghmiuni, A.I., Heidari Keshel, S., Sefat, Farshid, AkbarzadehKhiyavi, A. |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, Accepted manuscript |
Rights | (c) 2021 Crown Copyright. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/), CC-BY-NC-ND |
Page generated in 0.002 seconds