Return to search

Vehicle Conceptualisation, Compactness, and Subsystem Interaction : A network approach to design and analyse the complex interdependencies in vehicles

The conventional approach to vehicle design is restrictive, limited, andbiased. This often leads to sub-optimal utilisation of vehicle capabilities and allocated resources and ultimately entails the repercussions of designing andlater on an using an inefficient vehicle. To overcome these limitations, it is important to gain a deeper understanding of the interaction effects at component,subsystem, and system level. In this thesis, the research is focused on identifying appropriate methods and developing robust models to facilitate the interaction analysis. To scrutinise and identify appropriate methods, criteria were developed.Initially, the Design Structure Matrix (DSM) and its variations were examined.While DSM proved to be fundamental for capturing interaction effects,it lacked the ability to answer questions about the structure and behaviour ofinteractions and to predict unintended effects. Therefore, network theory wasexplored as a complementary method to DSM which was capable of providing insights into interaction structures and identifying influential variables. Subsequently, two criteria were established to identify subsystems significant to interaction analysis: high connectivity to other subsystems and multidisciplinary composition. The traction motor was observed to satisfyboth criteria as it had higher connectivity with other subsystems and was composed of multiple disciplines. Therefore, a detailed model of an induction motor was developed to enable the interaction analysis. The induction motor model was integrated into a cross-scalar design tool.The tool employed a two-step process: translating operational parametersto motor inputs using Newtonian equations and deriving physical attributes,performance characteristics, and performance attributes of the motor. Comparing the obtained performance characteristics curve against existing studiesvalidated the model’s reliability and capabilities. The design tool demonstrated adaptability to different drive cycles and the ability to modify motor performance without affecting operational parameters. Thus validating the capability of the design tool to capture cross-scalar and intra-subsystem interaction effects. To examine inter-subsystem interaction, a thermal model of an inverter was developed, capturing temperature variations in the power electronics based on motor inputs. The design tool successfully captured interaction effects between motor and inverter designs, highlighting the interplay with operational parameters. Thus, this thesis identifies methods for interaction analysis and develops robust subsystem models. The integrated design tool effectively captures intra-subsystem, inter-subsystem, and cross-scalar interaction effects. The research presented contributes to the overarching project goal of developing methods and models that capture interaction effects and in turn serve as a guiding tool for designers to understand the consequences of their design choices. / Det konventionella tillvägagångssättet för fordonsdesign är restriktiv, begränsat och partiskt. Detta leder ofta till en suboptimal användning av fordonets kapacitet och tilldelade resurser och innebär i slutändan att konsekvenserna blir att använda ett ineffektivt fordon. För att övervinna dessa begränsningar är det viktigt att få en djupare förståelse för interaktionseffekterna på komponent-, delsystem- och systemsnivå. I denna avhandling fokuserar forskningen på att identifiera lämpliga metoder och utveckla robusta modeller för att underlätta interaktionsanalysen. För att granska och identifiera lämpliga metoder utvecklades kriterier. Till att börja med undersöktes Design Structure Matrix (DSM) och dess variationer. Medan DSM visade sig vara grundläggande för att fånga interaktionseffekter, saknade den förmågan att besvara frågor om interaktionsstrukturer och beteende samt förutsäga oavsiktliga effekter. Därför utforskades nätverksteori som en kompletterande metod till DSM, vilket kunde ge insikter i interaktionsstrukturer och identifiera inflytelserika variabler. Därefter etablerades två kriterier för att identifiera delsystem som är betydelsefulla för interaktionsanalysen: hög anslutning till andra delsystem och mångdisciplinär sammansättning. Dragkraftmotorn observerades uppfylla båda kriterierna eftersom den hade högre anslutning till andra delsystem och var sammansatt av flera discipliner. Därför utvecklades en detaljerad modell av en induktionsmotor för att möjliggöra interaktionsanalysen. Induktionsmotormodellen integrerades i ett tvärskaligt designverktyg. Verktyget använde en tvåstegsprocess: att översätta operativa parametrar till motorinsatser med hjälp av Newtons ekvationer och härleda fysiska egenskaper, prestandakaraktäristik och prestandaattribut hos motorn. Jämförelse av den erhållna prestandakaraktäristikkurvan med befintliga studier validerade modellens tillförlitlighet och förmågor. Designverktyget visade anpassningsbarhet till olika körcykler och förmågan att modifiera motorprestanda utan att påverka operativa parametrar. Detta validerade designverktygets förmåga att fånga tvärskaliga och intra-subsystem interaktionseffekter. För att undersöka inter-subsysteminteraktion utvecklades en termisk modell av en inverter, som fångade temperaturvariationer i kraftelektroniken baserat på motorns styrning. Designverktyget fångade framgångsrikt interaktionseffekter mellan motor- och inverterdesign och belyste samspelet med operativa parametrar. Därmed identifierar denna avhandling metoder för interaktionsanalys och utvecklar robusta delsystemmodeller. Det integrerade designverktyget fångar effektivt intra-subsystem-, inter-subsystem- och tvärskaliga interaktionseffekter. Den presenterade forskningen bidrar till det övergripande projektets mål att utveckla metoder och modeller som fångar interaktionseffekter och i sin tur fungerar som ett vägledande verktyg för designers att förstå konsekvenserna av sina designval. / <p>QC 231003</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-337391
Date January 2023
CreatorsAbburu, Sai Kausik
PublisherKTH, VinnExcellence Center for ECO2 Vehicle design, KTH, Teknisk mekanik, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-FOU ; 2023:51

Page generated in 0.0029 seconds