Return to search

A Study of Passive Scalar Mixing in Turbulent Boundary Layers using Multipoint Correlators

This study analyzes a turbulent passive scalar field using two-point and three-point correlations of the fluctuating scalar field. Multipoint correlation functions are investigated because they retain scaling property information and simultaneously probe the concentration field for the spatial structure of the scalar filaments. Thus, multipoint correlation functions provide unique information about the spatial properties of the concentration filaments. The concentration field is created by the iso-kinetic release of a high Schmidt number dye into a fully developed turbulent boundary layer of an open channel flow. The concentration fields were previously measured using the planar laser-induced fluorescence technique.

The two-point correlations of the fluctuating scalar field indicate that as the scalar field evolves downstream, the anisotropic influence of the tracer injection method diminishes, and the scalar field becomes dominated by the mean velocity shear. As the scalar filaments align with the mean velocity gradient, the elliptical shape associated with the contours of the correlation function tilts in the direction of the mean velocity gradient. As a result, the two-point correlation contours of the concentration fluctuations indicate that anisotropic conditions (i.e. the tilted, asymmetric, elliptical shape) develop as a consequence of the mean velocity shear.

Three-point correlations of the fluctuating scalar field are calculated based on configuration geometries defined by previous researchers. The first configuration follows Mydlarski and Warhaft (1998), which employs two cold-wire measurements and Taylor's frozen turbulence hypothesis. The three-point correlation contours of the concentration fluctuations associated with the cold-wire measurements exhibit a symmetric characteristic V-shape. Similar symmetric properties are observed in the current study. The second set of configurations follows on recent theoretical predictions, which indicate that the three-point correlation of the fluctuating scalar field is dependent on the size, shape, and orientation of the triangle created by the three points. The current study analyzes two geometric configurations (isosceles and collinear). The geometric configurations are defined to ensure that the influence of the shape remains constant as the configuration is rotated, translated, and dilated. Additionally, the scaling exponent in the inertial-convective regime is calculated to determine the dependence of the correlation function on the size of the triangle pattern.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7574
Date28 November 2005
CreatorsMiller, Ronald J.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Format3829832 bytes, application/pdf

Page generated in 0.0013 seconds