Ein alltagstauglicher autonomer Assistenzroboter in einem gemeinsamenArbeitsumfeld mit dem Menschen erfordert, dass der Roboter sämtliche Hindernisse in seiner Umgebung wahrnimmt und diesen sicher ausweicht. Stand der Technik ist jedoch, dass meist nur 2D-Sensordaten zur Navigation herangezogen werden. Oder es werden3D-Verfahren verwendet, die ausschließlich mit einer speziellen Sensorkonfiguration arbeiten. Diese Arbeit untersucht im Rahmen des LiSA-Projekts wie 3D-Sensordaten effizient und flexibel zur sicheren Navigation eines autonomenAssistenzsystems eingesetzt werden können. Dazu wird in dieser Arbeit mit der Virtual Range Scans (VRS)-Methode ein Verfahren zurHindernisvermeidung entwickelt, das beliebige Konfigurationen von Abstandssensoren in den Hindernisvermeidungsprozess integriert. Das Verfahren nutztklassische Verfahren zur 2D-Hindernisvermeidung, um 3D-Hindernisvermeidung zu realisieren. Dadurch wird das VRS-Verfahren unabhängig von der Hindernisvermeidungsstrategie und kann flexibel bestehende Verfahren wiederverwenden. Neben der Hindernisvermeidung wird gezeigt, wie die reichereUmgebungsinformation, die in 3D-Sensordaten vorhanden ist, zur robusteren Selbstlokalisierung des Roboters genutzt werden kann. Hier wird eineffizientes Verfahren vorgestellt, das Abstandssensordaten mit 3D-Umgebungsmodellen vergleicht. Ferner wird ein Verfahren vorgestellt, das Semantikim Umfeld des Roboters verankert und sie zur Navigation des Roboters nutzt.
Identifer | oai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-2009070611 |
Date | 01 July 2009 |
Creators | Stiene, Stefan |
Contributors | Prof. Dr. Joachim Hertzberg, Dr. Norbert Elkmann, Prof. Dr. Werner Brockmann |
Source Sets | Universität Osnabrück |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/zip, application/pdf |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0015 seconds