Environmental pollution has been a serious concern worldwide. Many degradation methods have been developed to clean sites contaminated with pollutants. More knowledge and better understanding in this field will help to protect our environment. The goal of the research in this thesis is to gain a better understanding of the mechanism of organic pollutant degradation in Fenton reactions and sonochemical reactions. Fenton degradation uses hydroxyl radical to oxidize organic compounds. The radical is produced by catalytic decomposition of hydrogen peroxide with Fe(II). Further research has found that addition of cyclodextrins can enhance degradation efficiency of hydrophobic organic pollutants. To study the mechanism of the enhancement, pollutant-cyclodextrin-Fe(II) aqueous systems were studied by fluorescence and NMR techniques. The results indicated the formation of pollutant/carboxymethyl-â-cyclodextrin/Fe(II) ternary complexes in the solution. With the ternary complex, the catalyst Fe(II) becomes closer to the pollutant, therefore leading to more efficient hydroxyl radical attack on the pollutant. Additional studies showed that hydropropyl-â- cyclodextrin, â-cyclodextrin and á-cyclodextrin bound pollutant well, but bound Fe(II) poorly. Sulfated-â-cyclodextrin did not bind well with pollutant although it bound Fe(II) well. Sonochemical degradation is another important pollutant treatment method in practice. It was found that phenol sonolysis can be enhanced by volatile hydrogen atom scavengers such as carbon tetrachloride and perfluorohexane. The non-volatile hydrogen atom scavenger iodate did not enhance phenol degradation. The first order rate constant for aqueous phenol degradation increased by about 2.2-2.8 times in the presence of 150 ìM carbon tetrachloride. In the presence of less than 1.5 ìM perfluorohexane the first order rate constant increased by about 2.3 times. Hydroquinone was the major observed reaction intermediate both in the presence and absence of hydrogen atom scavengers. Hydroquinone yields were substantially higher in the presence of hydrogen atom scavengers, suggesting that hydroxyl radical pathways for phenol degradation were enhanced by the hydrogen atom scavengers. The additives investigated in this study have potential to improve pollutant degradation efficiency. Other fields may also benefit from the information gained in this study. For example the improvement could be achieved in synthetic processes that rely on hydroxyl radical as a key intermediate.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1219 |
Date | 17 December 2004 |
Creators | Zheng, Weixi |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0014 seconds