Return to search

Glycosylating Enkephalins: Design, Glycosylation Using Sugar Acetates in the Preparation of Glycosyl Amino Acids for Glycopeptide Syntheses, Binding at the Opioid Receptors and Analgesic Effects

Improved procedures for the glycosylation of serine and threonine utilizing Schiff base activation are reported. The procedures are less expensive and more efficient alternatives to previously published methods. The Schiff bases exhibited ring-chain tautomerism in CDCl₃ as shown by ¹H NMR. Acting as glycosyl acceptors, the Schiff bases reacted at RT with simple sugar peracetate donors with BF₃•OEt₂ promotion to provide the corresponding protected amino acid glycosides in good yields. With microwave irradiation, the reactions were complete in 2-5 minutes. Glycosylation with the dipeptide Schiff base shows the potential of this method in the preparation of peptide building blocks. To investigate this reaction further, direct glycosylation of sugar acetates with FMOC-Ser-OH/OBZl under BF₃•OEt₂ promotion in a microwave provided glycosides in high yield. In addition to the expected glycoside products acetylated side products resulting from acetate migration were isolated, suggesting that activation of the anomeric sugar acetates with a Lewis acid such BF₃•OEt₂ led to an oxocarbenium ion, which rearranged to a 1,2-dioxocarbenium ion because of the acetate participating group at C-2. Solvent participation was also illustrated with acetate migration being more pronounced when CH₃CN was used as a solvent and resulted in less product yield and higher amounts of the acetylated product. The acyl transfer products in these reactions where sugar acetates serve as glycosyl donors is reported for the first time, which also implies that ortho-ester like intermediates are important in the reaction mechanism. Keeping the message segment constant in the sequence H-Tyr-DThr-Gly-Phe-Leu- Ser-CO-NH₂ and modification of the address segment with different carbohydrate moieties had little effect on selectivity for binding at the μ, δ, or κ-opiod receptors. However, substitution of D-threonine with D-serine or the less polar D-alanine in the message segment resulted in a loss of κ-receptor affinity. Further replacement of D-threonine with the more hydrophobic D-valine resulted in complete loss of κ-binding affinity generating pure μ-δ agonists. These data suggests that changes in the message segment of the pharmacophore results in the glycopeptide adopting a conformation that is less favorable for 􀀁-binding receptor activity. Finally, the peripheral administration and i.c.v. tests of the drugs suggest that modifications in the message segment of the pharmacophore influences the potency of these compounds.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/193652
Date January 2007
CreatorsKeyari, Charles Mambo
ContributorsPolt, Robin L., Hruby, Victor J., Mash, Jr., Eugene A., Brown, Michael, Zheng, Zhiping
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0017 seconds