Excessive PM2.5 emissions in China threaten peoples’ health and cause massive economic burdens to society. Under pressure from the public, and the international community, China published PM2.5 standards for the first time in March 2012. Following the introduction of standards, several pilot cities began to build PM2.5 monitoring networks. This paper is designed to explore whether PM2.5 monitoring can be effectively undertaken and implemented in China and whether monitoring results can offer a technical basis to facilitate a significant reduction in actual PM2.5 emissions and protect public health. PM2.5 monitoring is essential in helping the government and public monitor pollution levels and supervise local compliance with PM2.5 standards. Key aspects to facilitate an effective monitoring process are discussed in the analysis. In addition, a case study – Lanzhou’s PM2.5 monitoring network – is provided to analyze and improve current PM2.5 monitoring practices at local levels, as well as suggest credible technical support to local authorities so as to cut PM2.5 emissions levels. Based on detailed analysis, the results suggest that PM2.5 monitoring can be successfully implemented in China by following several key principles – designing a representative PM2.5 monitoring network, applying QA/QC to ensure data quality, interpreting the data scientifically to understand real pollution levels, etc. In addition, this paper recommends three measures critical to realizing PM2.5 reduction goals: (1) emissions source control, (2) public participation to add input to the decision-making process and supervise local compliance with PM2.5 standards, and (3) non-governmental organization/international cooperation to improve local government and environmental agencies’ capacity with regards to environmental protection. Lessons derived from the case study can help improve PM2.5 monitoring performance not just in Lanzhou, but in cities that share similar monitoring issues across China. Scientific monitoring, together with the application of the above three measures, can more effectively curb PM2.5 emissions, improve air quality, and mitigate negative health effects associated with air pollution. / acase@tulane.edu
Identifer | oai:union.ndltd.org:TULANE/oai:http://digitallibrary.tulane.edu/:tulane_25149 |
Date | January 2014 |
Contributors | Li, Li (Author), Favalora, Sheila (Thesis advisor) |
Publisher | Tulane University |
Source Sets | Tulane University |
Language | English |
Detected Language | English |
Format | 276 |
Rights | Copyright is in accordance with U.S. Copyright law |
Page generated in 0.0026 seconds