While Newton’s law of gravity suffices for travelling nearby a planetary body, massive objects such as black holes require the more advanced theory of general relativity. To successfully fly a rocket in the vicinity of such an object, a first step is the description of test particle trajectories. In this report, the equations of motion for test particles affected by external forces are derived and used for simulations on a range of examples within the framework of general relativity. An application for these equations is found in the force required to counteract gravity, regardless of any non-radial motion around the black hole. Then, the equations of motion for a rocket test particle, which accelerates by expelling mass, are formulated for radial motion and used to find optimal mass conserving radial trajectories.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-349370 |
Date | January 2024 |
Creators | Sundström Curstedt, Johan, Nordmark, Ruben |
Publisher | KTH, Skolan för teknikvetenskap (SCI) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2024:180 |
Page generated in 0.0028 seconds