Return to search

Stratospheric chemical-dynamical ensemble data assimilation

Ensemble data assimilation uses Monte-Carlo methods to estimate flow-dependent error covariances which allow the transfer of information from observed variables to correlated ones. As the winds are largely unobserved in the stratosphere and models have biases there, the possibility to constrain the dynamical analysis from temperature or ozone observations is attempted using ensemble data assimilation.The applicability of coupled chemical/dynamical ensemble data assimilation in the stratosphere is tested in idealized perfect model observation system simulation experiments with the IGCM-FASTOC chemistry-climate model. Covariance localization is found to be necessary for stability of the Ensemble Kalman Filter (EnKF) data assimilation system and optimal localization parameters yield a strong constraint on the global dynamical state of the model when assimilating synthetic limb-sounding stratospheric temperature or ozone observations only. The multivariate coupling between ozone, temperature and winds is investigated in the optimized EnKF system. Stratospheric temperature and ozone observations induce valuable dynamical analysis increments during the analysis step. There is additional feedback during the forecast steps in the ensemble data assimilation system, further constraining the global dynamical and ozone states. The potential impact of assimilating observations posterior to analysis time in multivariate mode was estimated with an Ensemble Kalman Smoother (EnKS). Assimilation of additional asynchronous observations up to 48 hours posterior toanalysis time provided improvements on the EnKF analysis nearly similar to the ones obtained from the assimilation of a same amount of additional synchronous observations. The EnKS assimilation showed beneficial impacts on the unobserved variables analysis state but mixed impacts on the observed variable analysis state.The capacity to constrain the unobserved stratospheric winds by assimilating ozone observations is demonstrated in the ensemble data assimilation system with the EnKF and EnKS. The chemical-dynamical error covariances are critical to reduce the wind error in the model analysis state particularly through the ozone-wind covariances effective in the upper-troposphere lower-stratosphere region. Additional tests with strongly-biased initial forecasts, within a stratospheric sudden warming experiment, confirm the ability of the EnKF to efficiently propagate information from ozone observations to the dynamical model state. / L'assimilation d'ensemble utilise une méthode de Monte-Carlo pour estimer les covariances d'erreur du moment qui permettent le transfert d'information des variables observées aux variables corrélées à celles-ci. Puisque les vents sont très peu observés dans la stratosphère et que les modèles y présentent des biais, la possibilité de contraindre l'état dynamique du modèle par l'assimilation d'observations de température et d'ozone par la technique d'ensemble est tentée. L'applicabilité de l'assimilation d'ensemble dans un système chimique/dynamique couplé est testé lors d'une expérience idéalisé (modèle parfait) de simulation de système d'observation avec le modèle de chimie-climat IGCM-FASTOC. La localisation des covariances est indispensable à la stabilité du système d'assimilation avec filtre de Kalman d'ensemble (EnKF) et les paramètres optimaux offrent une forte contrainte sur l'état dynamique global du modèle lorsque l'on assimile des observations satellites synthétiques de température et d'ozone stratosphériques uniquement. Le couplage entre l'ozone, la température et les vents est étudié dans le système EnKF optimisé. Les observations de température et d'ozone stratosphériques créent des incréments dynamiques bénéfiques lors des phases d'analyses. Il y a également une rétroaction lors de la phase de prédiction du système d'assimilation de données, qui aide à contraindre davantage les états chimiques et dynamiques globaux. L'impact potentiel de l'assimilation de données postérieures au temps d'analyse en mode multivarié est estimé avec un lisseur d'ensemble de Kalman (EnKS). L'assimilation d'observations additionnelles asynchrones, ayant jusqu'à 48 heures d'écart avec le temps d'analyse, offre des améliorations aux analyses de l'EnKF presque équivalentes à celles obtenues par assimilation d'une quantité égale d'observations additionnelles synchrones. L'EnKS présente des impacts bénéfiques sur l'état d'analyse des variables non observées mais des impacts mitigés sur l'état analysé des variables observées. La capacité de contraindre les vents stratosphériques non-observés grâce à l'assimilation d'observations d'ozone est démontrée dans le système d'assimilation d'ensemble avec l'EnKF et l'EnKS. Les covariances d'erreurs chimiques- dynamiques sont essentielles à la réduction de l'erreur de vents dans l'état analysé du modèle, en particulier les covariances ozone-vent qui font effet dans la haute troposphère et basse stratosphère. Des expériences additionelles avec un état initial fortement biaisé, en l'occurence un réchauffement stratosphérique soudain, confirment l'abilité de l'EnKF à transférer de façon efficace l'information depuis les observations d'ozone vers l'état dynamique du modèle.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.110352
Date January 2012
CreatorsMilewski, Thomas
ContributorsMichel Bourqui (Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Atmospheric and Oceanic Sciences)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0149 seconds