Thesis (MScEng) --University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis deals with the development of a new process for the production of Direct Reduced Iron (DRI), intended for use specifically by small scale Electric Arc Furnace (EAF) based steel mills, who require small volumes of DRI. The term development as used here is taken to include such aspects as conceptual design, theoretical verification and initial practical testing. The rise of EAF steelmaking brought about the metamorphosis of steel scrap from a waste product into a valuable raw material. Scrap prices rose steeply during the period 1995 to 2009 compelling EAF steelmakers, wishing to have more control over the cost of their input material, to seek for scrap supplements or alternatives. DRI has become an accepted and sought after supplement, or even complete alternative, to steel scrap. Adding DRI to an EAF charge has a range of advantages, including the dilution of tramp elements and possible cost benefits, but it does have negative effects. These include the lowering of the scrap to liquid metal yield and an increase in power consumed. The effect of charging DRI to a small EAF is quantified. The maximum DRI that may be added to the burden whilst still maintaining the present steelmaking volume, is shown to be as high as 50% if charged continuously, and the maximum price payable for DRI, is shown to be approximately 80% of base grade scrap price. Finally other requirements unique to small scale EAF operators are considered in order to prepare a schedule of requirements for a DRI plant specifically for small scale EAF steel mills. A review of published information on existing DRI production technology, processes and plants is undertaken is establish the fit of existing processes to the requirements set. Initially the thermodynamics and kinetics of iron ore reduction and coal gasification, specifically downdraft gasification are reviewed. Thereafter existing processes are reviewed. Shaft based processes and rotary kiln based processes are identified as possible suitors to the requirements. Limitations of these processes, specifically heat transfer in rotary kilns and the pressure drop over a reduction shafts are investigated. Finally a typical process in each of the main process classes is adjudicated against the set requirements. None is found to match the set requirements. A new process is proposed that is claimed to better suit to small scale operation. The uniqueness of the process is embodied in the combination of existing technologies of downdraft gasification and iron ore reduction in a shaft, in a single reactor. The process consists of two shafts, one placed above the other. Iron ore is charged into the top shaft, called the pre-heat shaft, where it is pre-heated and lightly reduced to wustite with gas from the bottom shaft, called the reduction shaft. The pre-heated ore is then charged together with coal into the reduction shaft. Gasification air is drawn into the top of the reduction shaft where the coal is gasified in a downdraft gasifier, generating reduction gas which reduces the ore as the gas moves concurrently with the iron ore. The exit gas is cleaned and pumped to the pre-heat shaft where it combusted with air to pre-heat the iron ore in the pre-heat shaft. The concept is analysed thermodynamically using amongst others, FactSage, and is shown to be thermodynamically viable. To test the concept process concept practically, an extremely small pilot plant with a production rate of 2kg DRI/h, consisting of only a gasifier/reduction shaft, was designed and constructed using reduction rate data obtained from literature supplemented with data obtained from thermogravimetric analysis of CO reduction of lump Sishen hematite. Pilot Plant trials were performed using various reductant sources. The degree of metallizaion was analysed using visual inspection of cut and polished samples compared to calibrated standards. Analysis of the results indicate that coal rate and production rate influence the degree of reduction positively and negatively. The conclusions arrived at include the fact that the process is thermodynamically viable, that it was possible to reduce iron ore in a simplified pilot plant, and that the process was found to be stable and controllable. It is recommended that a larger scale pilot plant, embodying the full proposed flow sheet be erected to test the process more completely. / AFRIKAANSE OPSOMMING: Die tesis handel oor die the ontwikkeling van ‘n nuwe proses vir die vervaardiging van sponsyster. Die proses is beoog spesifiek vir gebruik deur kleinskaalse Elektriese Boogoond (EBO) gebaseerde staal aanlegte, wat kleiner hoeveelhede sponsyster benodig. Die term ontwikkeling soos hier gebruik word aanvaar om aspekte soos konseptuele ontwerp, teoretiese verifikasie en aanvanklike toetsing te behels. Die vinnige groei van EBO staalvervaardiging het skroot getransformeer van weggooiproduk tot waardevolle grondstof. Die prys van skroot het skerp gestyg gedurende die periode 1995 to 2009. EBO gebaseerde staal produsente, in ‘n poging om meer beheer te hê oor die koste van hul insetmateriaal, het hul in ‘n toenemende mate tot skrootalternatiewe gewend. Sponsyster het ‘n aanvaarde en gewaardeerde byvoeging, en selfs alternatief tot staalskroot geword. Die byvoeging van sponsyster by die lading van ‘n tipiese EBO het besliste voordele, maar het dit ook nadelige effekte. Die voordele sluit die verdunning van reselemente en moontlike kostevoordele in, terwyl van die nadele die verlaging van die skroot tot vloeistaal opbrengs, en ‘n verhoging in kragverbruik, is. Die effek van die byvoeging van sponsyster tot ‘n EBO lading word gekwantifiseer. Daar word getoon dat die maksimum hoeveelheid sponsyster wat by ‘n EBO lading gevoeg kan word terwyl die hoeveelheid staal geproduseer konstant gehou word, ongeveer 50% is indien die sponsyster kontinue gelaai word, en die maksimum prys wat vir die sponsyster betaal kan word, word bereken op ongeveer 80% van die prys van basisgraad skroot. Ander vereistes uniek aan kleinskaal EBO bedrywers word oorweeg ten einde ‘n lys van vereistes vir ‘n sponsysteraanleg, uniek aan kleinskaal EBO bedrywers, te kan bepaal. ‘n Oorsig van gepubliseerde inligting oor sponsysterproduksietegnologie word onderneem ten einde die passing van bestaande prosesse met die gestelde vereistes te kan bepaal. Nadat die termodinamika en kinetika van ysterertsreduksie en steenkoolvergassing be-oordeel is, word bestaande sponsysterprosesse beskou. Skag- en Roterende oond gebaseerde prosesse word as moontlik gepaste prosesse identifiseer. Hitte-oordrag en die drukval oor gepakte beddens, synde tipiese beperkings eie aan die twee prosesse, woord beskou. Tipiese prosesse in elk van die hoofklasse van prosesse word ten laaste be-oordeel aan die gestelde kriteria. Daar word bevind dat geeneen van die bestaande prosesse aan die vereistes voldoen nie. ‘n Nuwe proses, wat skynbaar die behoefte van kleinskaalse EBO gebaseerde staalprodusente beter bevredig, word voorgestel. Bestaande tegnolgie word in ‘n unieke opstelling geïntegreer. Reduksie word in ‘n reduksiekag gedoen as gevolg van die ooglopende massa- en hitte-oordragvoordele van ‘n skag. Reduksiegas word verkry van steenkoolvergassing in ‘n afstroomvergasser ten einde teerverwydering in ‘n naverwerkingsstap oorbodig te maak. Die uniekheid van die proses is beliggaam in die kombinasie van ‘n steenkoolvergasser en reduksieskag in ‘n enkele reaktor. Die proses bestaan uit twee skagte, een bo die ander. Ystererts word in die boonste skag, wat die voorverhitskag genoem word, gelaai. Hier word die erts voorverhit en moontlik lig gereduseer tot wustiet met gas van die onderste skag, wat die reduksieskag genoem word. Die voorverhitte erts word saam met steenkool in die reduksieskag gelaai. Vergassingslug, word in die reduksieskag gesuig waar die steenkool in ‘n afstroomvergasser vergas word. Hierdeur word reduksiegas gegenereer wat die erts verder reduseer soos dit saamstromend met die erts af beweeg. Die uitlaatgas word gesuiwer en na die voorverhitskag gepomp waar dit verbrand word om die erts te voorverhit. Die konsep is termodinamies analiseer met gebruikmaking van onder andere FactSage, en werkbaar bevind. ‘n Baie klein, vereenvoudigde proefaanleg, met ‘n produksievermoë van 2kg DRY/uur, bestaande uit slegs ‘n reduksiekag, is ontwerp en gebou met gebruikmaking van kinetika inligting uit die literatuur aangevul met inligting uit termogravimetriese analise van die CO reduksie van Sishen hematiet. Proefaanleglopies is uitgevoer met ‘n reeks reduktantbronne. Die metallisasiegraad is bepaal deur visuele inspeksie van gesnyde, gepoleerde monsters wat vergelyk is met gekalibreerde standaarde. Analise van die resultate toon dat die steenkoolkoers ‘n positiewe verband, en die produksiekoers ‘n negatiewe verband met die metallisasiegraad het. Die slotsom waartoe gekom is, is dat die proses termodinamies werkbaar is, dat reduksie van ystererts in ‘n vereenvoudigde proefaanleg bewerk kon word, en dat die prose stabiel en beheerbaar voorgekom het. Die aanbeveling word gemaak dat ‘n groter proefaanleg wat die volledige voorgestelde vloeiskema verteenwoordig, opgerig behoort te word, ten einde die proses meer volledig te kan toets.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/17442 |
Date | 03 1900 |
Creators | Delport, Hendrikus Mattheus Wessels |
Contributors | Akdogan, G., Stellenbosch University. Faculty of Engineering. Dept. of Process Engineering |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | Unknown |
Type | Thesis |
Format | 131 p. : ill. |
Rights | Stellenbosch University |
Page generated in 0.0025 seconds