Return to search

Développement et amélioration d'un polymère issu de la biomasse et provenant en partie du bois

Le pétrole est une source de matière première importante pour la synthèse de milliers de composés organiques, mais il n’est pas renouvelable. L’industrie des revêtements est très dépendante des ressources fossiles. Par ailleurs, l’industrie forestière connaît une crise depuis plusieurs années. Donc, substituer les produits issus des ressources fossiles par des produits du bois à valeur ajoutée pourrait pallier à ces problèmes environnementaux et économiques. En effet, l’objectif de notre recherche est de développer et améliorer un polymère qui serait issu de la biomasse, en particulier pour l’industrie des revêtements. Il vise également à mettre en valeur les produits du bois par l’utilisation des composés peu exploités qui se retrouvent dans les résidus comme l’écorce. La bétuline est un extractible principalement isolé de l’écorce du bouleau blanc. Elle possède une structure moléculaire rigide et trois fonctions réactives qui peuvent être modifiées à des fins d’utilisation dans la synthèse de polymère. L’huile de soya est une huile végétale qui est de plus en plus utilisée pour développer de nouveaux revêtements à cause de ses nombreuses insaturations qui peuvent subir des modifications et ses propriétés particulières comme sa siccativité moyenne et sa faible viscosité. Cependant, les huiles végétales sont souvent moins performantes que leurs homologues synthétiques issus des ressources fossiles. Pour améliorer leurs propriétés, elles sont souvent modifiées dans leur structure, par exemple en leur greffant des fonctions acrylates. De plus, il est possible d’améliorer certaines de leurs propriétés par l’entremise de comonomères ou d’agents de renfort. La cellulose nanocristalline (CNC) est un matériau provenant également de la biomasse et qui a du potentiel pour l’amélioration de certaines propriétés d’un revêtement. Cependant, elle est difficilement compatible avec des matrices apolaires comme les acrylates. Il est possible de modifier la CNC afin de la rendre plus compatible avec les matrices acrylates. Donc, la première idée est de joindre l’huile de soya acrylée (AESO) avec un comonomère issu de la bétuline. Pour ce faire, la bétuline a été acrylée. Pour s’assurer de l’obtention du bon produit les spectroscopies FTIR et RMN ont été employées. Aussi, des analyses par GC-MS ont été effectuées, afin de vérifier si la bétuline est majoritairement mono ou diacrylée. Ensuite, pour vérifier son effet comme comonomère sur la polymérisation et pour analyser la stabilité thermique du polymère ; les méthodes d’analyse par photo-DSC et par TGA ont été utilisées respectivement. De plus, les propriétés optiques ont été mesurées, soit la transparence et la couleur, afin d’examiner l’impact d’un tel ajout sur l’apparence du film de polymère. Enfin, pour évaluer les performances de ce nouveau polymère comme revêtement potentiel, différentes analyses ont été effectuées pour vérifier la dureté du film, sa résistance à l’abrasion et sa résistance à la traction. Dans un second plan, la CNC a été utilisée sous deux formes modifiées (par HDTMA et par un acrylate) comme agent de renfort avec la matrice d’AESO. De cette façon, certaines propriétés ont été modifiées. Pour vérifier l’effet des CNC modifiées dans le nouveau nanocomposite, plusieurs tests et analyses ont été effectués. Par exemple, pour étudier le changement des propriétés mécaniques, des mesures de traction et de nanoindentation ont été effectuées. Enfin, pour évaluer les performances de ce nouveau composite comme revêtement potentiel, différentes analyses ont été effectuées pour vérifier la dureté du film, sa température de transition vitreuse (Tg), sa stabilité thermique, son taux de polymérisation, sa rugosité et sa transparence. / Crude oil and its derivatives are used to synthesize thousands of organic compounds, but they are non-renewable and harmful to the environment. The coating industry is dependent on fossil fuels. Besides, the forest industry has faced a crisis during the past several years. Then, the substitution of fossil fuels by value added wood products could solve these environmental and economic issues. In fact, the main objective of this study is to develop and improve a polymer from biomass, more specifically for the coating industry. In addition, it aims to promote the use of underutilized materials in wood, like bark. Betulin is a triterpenoid extracted from white birch. Its interesting molecular structure can be modified for use within polymer synthesis. Soybean oil, a vegetable oil, is increasingly used to develop new coating because of its interesting properties. However, vegetable oils are less efficient than the ones from fossil fuels. To enhance theirs properties, vegetable oils are often modified, for example by grafting acrylate functionalities. Moreover, the use of a comonomer or a reinforcing agent can enhance some of the vegetable oil properties. Cellulose nanocrystals (CNC) is a material from biomass which has potential to improve coating properties. However, CNC has low compatibility with non-polar polymer matrices, like acrylates, but can be modified to improve its compatibility. First, the idea is to combine acrylated epoxidized soybean oil (AESO) with a comonomer from betulin. To obtain a compatible comonomer with the AESO matrix, betulin has been acrylated. FTIR and NMR spectroscopy analyses have been used to characterize and confirm the modification of betulin. Also, GC-MS analysis has been done to verify if betulin was mainly mono or diacrylated. Then, to verify the effects of the comonomer on the curing behavior and thermal stability of AESO matrix, photo-DSC and TGA analyses have been used respectively. Moreover, optical properties (transparency and color measurements) have been measured to verify the impact of the comonomer on the appearance of the coating film. Finally, to evaluate the performance of the new polymer to be used as a coating, various tests have been performed, like abrasion resistance, hardness and tensile tests. Secondly, two different modified CNC (HDTMA-CNC and acrylated CNC) have been used as reinforcing agent with AESO matrix. To verify the impact of the CNC on the mechanical properties of the new nanocomposites, tensile test and nanoindentation technique have been used. Lastly, to evaluate the performance of the new composites, various tests and analyses have been performed, like hardness test; thermal stability; curing behavior; surface roughness; transparency and glass transition measurements.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27715
Date24 April 2018
CreatorsAuclair, Nicolas
ContributorsRiedl, Bernard, Landry, Véronic
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxii, 201 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0031 seconds