Return to search

Poly(Ethylene Oxide) Based Bottle-Brush Polymers and their Interaction with the Anionic Surfactant Sodium Dodecyl Sulphate : Solution and Interfacial Properties

The aim of this thesis work is to study the physico-chemical properties of poly(ethylene oxide), PEO, based brush polymers both in solution and at solid/aqueous interfaces. The importance of studying the surface properties of brush polymers can be related to a broad spectrum of interfacial-related applications such as colloidal stability, lubrication, detergency, protein repellency to name a few. In many applications it is desirable to form brush-like structures through simple physisorption. In this context the surface properties of PEO based brush polymers differing in molecular architecture were studied, using ellipsometry and surface force apparatus (SFA), to gain some understanding regarding the effect of molecular architecture on the formation of brush structures. The molecular architecture was varied by varying the charge/PEO ratio along the backbone. This study demonstrates that the formation of a brush structure at solid/aqueous interface is due to interplay between the attraction of the backbone to the surface and the repulsions between the PEO side chains. An optimal balance between the two antagonistic factors is required if one aims to build a well-defined brush structure at the interface. In this study the brush-like structures are formed when 25-50% of the backbone segments carry poly(ethylene oxide) side chains. Scattering techniques such as light and neutron reveal that these brush polymers are stiff-rods up to a charge to PEO ratio of 75:25. These stiff PEO brush polymer easily replace the more flexible linear PEO at the silica/water interface, the reason being that the entropy loss on adsorption is smaller for the brush polymer due to its stiff nature.  Polymer-surfactant systems play a ubiquitous role in many technical formulations. It is well known that linear PEO, which adopts random coil conformation in aqueous solution, interact strongly with the anionic surfactant, Sodium Dodecyl Sulphate (SDS). It is of interest to study the interaction between SDS and brush PEO owing to the fact that the PEO side chains have limited flexibility as compared to the linear PEO.  The interaction between brush PEO and the anionic surfactant SDS in solution are studied using different techniques such as NMR, tensiometry, SANS and light scattering. The main finding of this study is that the interaction is weaker compared to the linear PEO-SDS interactions which poses an interesting question regarding the role of chain flexibility in polymer-surfactant interactions. / QC 20100813

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4680
Date January 2008
CreatorsIruthayaraj, Joseph
PublisherKTH, Ytkemi, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-CHE-Report, 1654-1081 ; 2008:17

Page generated in 0.0019 seconds