Return to search

Late Quaternary sedimentation off the Queensland continental margin (northeast Australia) in response to sea level fluctuations

Drilling during ODP Leg 133 offshore Cairns, northeast Queensland, provided a unique opportunity to document carbonate production and facies development on a mixed carbonate-siliciclastic margin. Recent studies have shown that variations in the sedimentology of Late Quaternary and Pliocene periplatform sediments (Schlager and James, 1978), deposited on continental slopes and in deep basins surrounding shallow carbonate platforms, are linked to changes in sea-level (Droxler et al., 1993; Schlager et al., 1994). However, considerable debate has arisen to the timing of the production and export of shallow water carbonate material, with respect to sea level change. Two main hypotheses have been proposed to explain the response of shallow water carbonate platforms to variation in Late Quaternary sea level: I) 'highstand shedding' and 2) 'lowstand shedding'. Proponents of highstand shedding argue that depositional systems shed most of its carbonate sediments onto the platform slopes during highstands of sea level. Conversely, during lowstands of sea level bank top production and export of carbonate material is restricted, and platform slopes are largely starved of bank derived carbonate (Schlager, 1992; Schlager et al., 1994 ). Supporters of lowstand shedding maintain that significant carbonate production and export of shallow water carbonate material occurs during lowstands (and highstands) of sea level (Bosellini, 1989; Goldhammer and Harris. 1989; Grammer and Ginsburg. 1992). In order to investigate the response of mixed carbonate-siliciclastic systems to variations in Late Quaternary sea level and climate change, core material was collected from Ocean Drilling Program (ODP) Leg 133, Sites 819 and 823 (northeast Australian margin). These two sites form part of an eastward extending transect of drill localities, offshore Cairns, Queensland, from the outershelf/upper-slope of the Great Barrier Reef (Sites 821 /820/819), into the Queensland Trough (Site 823) and ultimately onto the flanks of the Queensland Plateau (Sites 824 and 811 /825). Pelagic to hemipelagic sediments collected from these two sites were examined for the downcore distribution of grain size, magnetic susceptibility, carbonate content, variations in carbonate mineralogy (XRD), and major and minor element (XRF) geochemistry. Using high resolution foraminiferal stable oxygen isotopes, coupled with biostratigraphic and magnetostratigraphic datums, well defined age models for Hole 819A and Hole 823A have been constructed, although it was not an easy task as hiatuses occur in these records. Age models for the sequences recovered from Hole 819A and Hole 823A have been further refined using correlation with existing isotopic stratigraphies in the Pacific Ocean (ODP Hole 677, Raymo et al., 1989), and comparison with high resolution sedimentologic records from other ODP Leg 133 marine sequences. Analysis of the mineralogical, sedimentological and geochemical records from Holes 819A and 823A indicate that, over the last 1.1 million years, highstands of sea level (and during the early regression) are characterized by increased shallow water carbonate production, and deposition on the upper slope. This pattern of carbonate deposition is consistent with the highstand carbonate shedding scenario outlined by Schlager et al. (1992), and Schlager et al. ( 1994 ). Lowstands of sea level (and particularly the early transgression) are characterized by increased deposition of non-carbonate (mainly terrigenous) material and/or were not diluted by shallow water carbonate platform material. During the lowstands of sea level the shallow water carbonate factories were switched off. Therefore, the sediments deposited during lowstands of sea level tend to record the greater influence of pelagic driven carbonate. Although the above mentioned scenario of highstand shedding applies to the entire record of 1.1 million years. mineralogical and geochemical data indicate that shallow burial diagenesis, and dissolution of solution sensitive carbonate, occurred in the lower part of the records. The diagenesis and dissolution, however, have played only a minor role in determining the composition of the Queensland margin sediments. Variations in the terrigenous input (Cr/Al and Ti/AI ratios) in Queensland margin sediments indicate that interglacial periods were generally wetter than corresponding glacials or lowstands of sea level, during the Late Quaternary.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:586189
Date January 1996
CreatorsAlexander, Ian T.
ContributorsKroon, Dick; Shimmield, Graham
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/8161

Page generated in 0.0019 seconds