This thesis proposes a new multi-homing mobile architecture for future heterogeneous network environment. First, a new multi-homed mobile architecture called Multi Network Switching enabled Mobile IPv6 (MNS-MIP6) is proposed which enables a Mobile Node (MN) having multiple communication paths between itself and its Correspondent Node (CN) to take full advantage of being multi-homed. Multiple communication paths exist because MN, CN, or both are simultaneously attached to multiple access networks. A new sub layer is introduced within IP layer of the host’s protocol stack. A context is established between the MN and the CN. Through this context, additional IP addresses are exchanged between the two. Our MNS-MIP6 architecture allows one communication to smoothly switch from one interface/communication path to another. This switch remains transparent to other layers above IP. Second, to make communication more reliable in multi-homed mobile environments, a new failure detection and recovery mechanism called Mobile Reach ability Protocol (M-REAP) is designed within the proposed MNS-MIP6 architecture. The analysis shows that our new mechanism makes communication more reliable than the existing failure detection and recovery procedures in multi-homed mobile environments. Third, a new network selection mechanism is introduced in the proposed architecture which enables a multi-homed MN to choose the network best suited for particular application traffic. A Policy Engine is defined which takes parameters from iv the available networks, compares them according to application profiles and user preferences, and chooses the best network. The results show that in multi-homed mobile environment, load can be shared among different networks/interfaces through our proposed load sharing mechanism. Fourth, a seamless handover procedure is introduced in the system which enables multi-homed MN to seamlessly roam in a heterogeneous network environment. Layer 2 triggers are defined which assist in handover process. When Signal to Noise Ratio (SNR) on a currently used active interface becomes low, a switch is made to a different active interface. We show through mathematical and simulation analysis that our proposed scheme outperforms the existing popular handover management enhancement scheme in MIPv6 networks namely Fast Handover for MIPv6 (FMIPv6). Finally, a mechanism is introduced to allow legacy hosts to communicate with MNS-MIP6 MNs and gain the benefits of reliability, load sharing and seamless handover. The mechanism involves introducing middle boxes in CN’s network. These boxes are called Proxy-MNS boxes. Context is established between the middle boxes and a multi-homed MN.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:504978 |
Date | January 2009 |
Creators | Kiani, Adnan K. |
Contributors | Ni, Q. ; Yao, W. |
Publisher | Brunel University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://bura.brunel.ac.uk/handle/2438/3867 |
Page generated in 0.0018 seconds